Data Mining in Manufacturing:
5 Years Experience
at ALTIS Semiconductor
Jean-Luc GROLIER

SAS FORUM GENEVA 2006
Agenda

- Altis Semiconductor
- Manufacturing Context
- Yield Monitoring with Data Mining
- Yield Improvement with Data Mining
- Conclusion
Altis Semiconductor

- Join Venture IBM & Infineon Technologies

- The largest advanced logic fab in Europe:
 - A capacity of 7,000 silicon wafers per week
 - 60% Copper - 40% Aluminum

- A major S/C Campus (60 ha - 40 km south of Paris):
 - A multicultural team of 2000 people from > 15 nations
 - European centers of 15 industry leaders

Partners: IBM, Air Liquide, TOPPAN, KLA-Tencor, Infineon, IGS, BOC Edwards, GEODIS
Altis ID Card

- **Products:**
 - Advanced CMOS logic, Embedded DRAM, mixed-signal technologies
 - **SOC Concept:** Integration on a chip of Logic, Memory & Analog devices
 - Minimum pattern size: 0.25 µm down to 0.11 µm

- **Markets:**
 - 40% Europe, 30% US, 30% AP

- **Total revenue 2005:** ~ 450 millions €

- **R&D investment 2005:** ~ 10% of total revenue

- **Certifications:** ISO 9002, ISO 14001, ISO 16949
System On a Chip

Source: TI
Integration scale

Board: 10 cm

Chip: 0.3 - 1 cm

Transistor: 0.13 µm
Number: 80 Millions

Copper Interconnections
5 to 8 levels
Our Market segments

Wide Range Of Applications

- Telecom
- Computer Peripherals
- Computer Graphics
- Computer Servers
- Internet & Networking
- Security
- Consumer
- Automotive & Industry
- Wide Range Of Applications
Agenda

• Altis Semiconductor

• Manufacturing Context

• Yield Monitoring with Data Mining

• Yield Improvement with Data Mining

• Conclusion
Manufacturing Context

- **Manufacturing Clean Rooms:**
 - Surface: 35,000 m²
 - Specifications: < 1 particle/liter
 - Paris: 350,000 particles/liter

- **Manufacturing Steps:**
 - 300 steps / 800 Equipments
 - Cycle time: 1 to 2 months
 - Multiple Technologies / Products

- **Manufacturing Lots:**
 - 40 Lots / day
 - 25 Wafers / Lot
 - 100 to 3000 Chips / Wafer
 - 1000 Parameters / Chip
Manufacturing Context

- **Quality Controls**:
 - Log = Logistic Flow of Manufacturing Lots
 - Phy = Physical Measurements
 - Def = Defects Detection

- **Electrical Yield**:
 - Each Chip is electrically Tested
 - Yield = # Good Chips / # Good & Bad Chips
 - Yield = f (Log, Phy, Def)

- **Yield Improvement**:
 - Focus on Yield Detractors (Log, Phy, Def)
 - High Yield = Reduced Manufacturing Costs
 - Rapid Yield Ramp-up = New Products Startup
Data Management System

- **Data Collection in DB2 DWH:**
 - **Multiple Data Sources:** raw material, equipment data & history, metrology, defect inspection, electrical data ...
 - **Different Data Aggregation Levels:** lot, wafer, chip
 - Large amount of Data to handle and retrieve
 - High level of Data Integrity to maintain in relational DB

- **Data Analysis on Centralised SAS server:**

<table>
<thead>
<tr>
<th></th>
<th>Standalone</th>
<th>Unix emulation</th>
<th>Client/Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAS JMP</td>
<td>10 Evaluators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAS Base, Stat, Graph</td>
<td></td>
<td>200 « Std users »</td>
<td></td>
</tr>
<tr>
<td>SAS Enterprise Miner</td>
<td></td>
<td></td>
<td>10 « Top users »</td>
</tr>
</tbody>
</table>
Data Management System

- **Process**
 - OPR-1
 - OPR-2
 - MES-1
 - OPR-3
 - DEF-1
 - OPR-4
 - TEST

- **Operational DB**
 - Logistic Measurements
 - Contamination Test

- **Relational DB** (MVS or Unix)

- **Back Office** (Unix)
 - SAS

- **Front Office** (Windows)
 - SAS JMP
 - Emulation
 - SAS EM
Challenges of Data Analysis Solutions:

- Complexity of Data relationships ⇔ Specific analysis packages
- Diversity of Data ⇔ Flexibility and ease of Data access
- Specific user developments ⇔ Integrated Data Analysis Tool

In-House Development Capabilities:

- Expensive commercial solutions / not fully integrated
- SAS Programming Competence : Data Analysis Team
Data Analysis Solutions

| **Specific ETL** | - Test calculator
| | - Wafer Tracking loader
| **Data Reporting** | - Automated Reporting
| | - User defined profiles
| | ~ 10000 graphics /week
| **Wafer Map Reporting** | - Display of Yield Detractors
| | - Web access
| | ~ 1000 maps / day
| **Interactive Data Analysis** | - Interactive Queries (GUI)
| | - Data Restitution
| | - Specific Analysis Modules
| | - Deployment ~ 150 Engineers

![TOP CRITICAL PARAMS](image)

![AG FONC](image)

![tools](image)
Agenda

- Altis Semiconductor
- Manufacturing Context
- Yield Monitoring with Data Mining
- Yield Improvement with Data Mining
- Conclusion
General Definition:
- Data Mining is "the nontrivial extraction of implicit previously unknown and potentially useful information from data."
 (G. Piatetsky-Shapiro, W. J. Frawley)

Altis Definition:
- Specific Data Mining Approaches driven by Expertise
- Exhaustive Data coverage & fully automated Treatment
- Alerting & Decision made on Statistical Tests
- Results highlighted through easy visible representations
Yield Evolution

- Yield ramp up:
 - Different phases: development, ramp up & manufacturing
 - Different shapes: depending on technology & process complexity
Zoom on Yield trends:
- Drift detection ⇔ Yield Monitoring
- Baseline enhancement ⇔ Yield Improvement
Yield & Data Mining Objectives

Yield Monitoring:
- Reaction to unexpected Yield drift
- Unknown Root Cause mechanisms

 ➤ How to minimize and prevent any escape?
 ➤ How to find rapidly root cause mechanism?

Yield Improvement:
- Action for an expected Yield enhancement
- Process Change implementation

 ➤ How to perform exhaustive analysis?
 ➤ How to prevent any unexpected impact?
(1) “Bad Equipment” Detection:
- Yield = f (Operations-Equipments)
 - Tree decision
 - ANOVA

(2) “Bad Operation” Detection:
- Yield = f (Operations)
 - Proprietary algorithm

(3) Major Yield Detractors:
- Yield = f (Physical Measurements)
 - Mono/Multivariate regression
(1) “Bad Equipment” Detection

- EQ-B is “guilty”?
 - 0 x EQ-B : Lot-X = 70%
 - 1 x EQ-B : Lot-Z = 60%
 - 2 x EQ-B : Lot-Y = 50%
(1) Tree Decision

Wet Opération:
- Known problem already detected
- Capacity Bottleneck
- Technical fixes on going.

Anneal Operation:
- Unknown problem!!
- Unknown mechanism to Experts!!
- High Yield Impact!!
- Stop Order of EQ-A & EQ-B
(1) ANOVA

<table>
<thead>
<tr>
<th>Operations</th>
<th>DF</th>
<th>K.Wallis Prob</th>
<th>Tableau</th>
<th>Boxplot</th>
<th>Chart</th>
</tr>
</thead>
<tbody>
<tr>
<td>t0959XTLTPAMT</td>
<td>8</td>
<td>4.900548E-24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t0925XTLTPANT</td>
<td>3</td>
<td>3.0744442E-7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t0785XPHCVNQV</td>
<td>1</td>
<td>0.0000636446</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(2) « Bad Operation » Detection

● Objective :

- Explain: \(\text{Yield} = f(\text{Operations}) \)
- Slight «lot speed» variation at each operation
- Process Drift Factor calculated for each operation
- The smallest PDF -> the sharpest process drift

● Results :

- Emphasis of the drifting operation
- Additional investigations necessary to find the root cause
- Some clear findings of process degradation (recipe change or raw material quality problems)
(2) « Bad Operation » Detection

PDF
(Process Drift Factor)
(3) Major Yield Detractors

Objective:
- Explain: \(\text{Yield} = f(\text{Physical Measurements}) \)
- Univariate regressions preferred to multivariate
- Ranking of explanatory variables by correlation coefficients

Results:
- Fast, exhaustive review of all possible measurements
- Decision help to focus on major detractors (+ Data reduction interest)
- Unknown or unexpected relations found on many cases
(3) Major Yield Detractors

Analyse de Corréléation

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>10124</th>
<th>10125</th>
<th>10128</th>
<th>10691</th>
</tr>
</thead>
<tbody>
<tr>
<td>ect08519</td>
<td></td>
<td>0.0181624338</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ect10001</td>
<td></td>
<td></td>
<td>0.1285255957</td>
<td></td>
</tr>
<tr>
<td>ect10071</td>
<td></td>
<td></td>
<td></td>
<td>0.3055167663</td>
</tr>
<tr>
<td>med10015</td>
<td>-0.22087709</td>
<td>-0.06430797</td>
<td></td>
<td></td>
</tr>
<tr>
<td>med11073</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>med10264</td>
<td>-0.217242857</td>
<td>-0.12648013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>med10261</td>
<td>-0.223695213</td>
<td></td>
<td>-0.13528398</td>
<td></td>
</tr>
<tr>
<td>ect11055</td>
<td>-0.211653305</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>med10276</td>
<td>-0.23149213</td>
<td>-0.26009953</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ect11054</td>
<td>-0.307603449</td>
<td>-0.20640773</td>
<td></td>
<td></td>
</tr>
<tr>
<td>med10030</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Agenda

- Altis Semiconductor
- Manufacturing Context
- Yield Monitoring with Data Mining
- Yield Improvement with Data Mining
- Conclusion
Yield Improvement Approaches

- **Process Change Qualification**:
 - Old Process on EQ-A (reference)
 - New Process on EQ-B

- **Expectations**:
 - Yield or Performance improvement:
 - Yield(EQ-B) > Yield(EQ-A)
 - Productivity enhancement:
 - Yield(EQ-B) = Yield(EQ-A)

- **Different Phases**:
 - Evaluation: experimentation on a few wafers
 - Qualification: confirmation on more wafers and lots
 - Pre-Manufacturing: validation on many lots
 - After each phase: comparison EQ-B % EQ-A
Process Qualification: split Lot

Equipment variability minimized

Equipment Variability EQ-A ≠ EQ-B?
Yield Improvement Approaches

● Actual Limitations:
 - Manual Analysis on a limited set of parameters
 - Decision rules not unified and analyst dependant
 - Risk of escape on some parameters

● «SAFE» project for Process Qualification:
 - Exhaustive & automated analysis of all electrical parameters
 - ETL for data and results
 - Decision made on statistical test results (ANOVA)
 - HTML output (intranet)

● Results:
 - Most of Qualification analysed via SAFE
 - Efforts to «manage the change» and promote statistical analysis
 - ~700 à 1000 Parameters analysed by qualification
 - Increase in analysis throughput (+100%)
SYNTHESE SPLIT 6313.00 LEVEL : _PREFUSE

CLASSE CERTIF ELECTRODE 20°F

A = PORL03C
B = EWRL03A

PARAM GROUP DESCRIBE N.WAF MEAN
7228 V.C.10691 Allgood A=PORL03C 24 74.11
7228 V.C.10691 Allgood B=EWRL03A 25 74.48

YLD

<table>
<thead>
<tr>
<th>Type</th>
<th>Parameter (test,version,parameter)</th>
<th>Group</th>
<th>Normal Test ?</th>
<th>#Waf/#Tot</th>
<th>Mean</th>
<th>P_value (mean)</th>
<th>α</th>
<th>P_value (α)</th>
<th>Boxplot</th>
</tr>
</thead>
<tbody>
<tr>
<td>HARD Bin</td>
<td>7228 C 10002 HBIN2 (PCT)</td>
<td>A</td>
<td>Y</td>
<td>24/24</td>
<td>2.631</td>
<td>POI</td>
<td>0.765</td>
<td>POI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>Y</td>
<td>25/25</td>
<td>3.974</td>
<td>0.000043941</td>
<td>1.23</td>
<td>0.0349554815</td>
<td></td>
</tr>
<tr>
<td>SOFT Bin</td>
<td>7228 C 10120 SBIN2 (PCT)</td>
<td>A</td>
<td>N</td>
<td>24/24</td>
<td>0.102</td>
<td>POI</td>
<td>0.316</td>
<td>POI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>N</td>
<td>25/25</td>
<td>0.5</td>
<td>0.0031082672</td>
<td>0.895</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Essai 6313.00 PNP= 7228—C Value: YLD Alpha= 0.05
HBIN2 = 10002

Data analysis: 59/100 = 59.00%
Agenda

- Altis Semiconductor
- Manufacturing Context
- Yield Monitoring with Data Mining
- Yield Improvement with Data Mining
- Conclusion
Conclusion

Strength of an “In-House” SAS Data Analysis Team:
- High Reactivity to Customer needs
- Deeper expertise and promotion of Statistics
- Strategical benefits in a very competitive industry

“Data Mining Success Story at Altis Semiconductor”:
- Fast, Exhaustive & Systematic Analysis of all possible Root Causes
- Key for Yield Monitoring & Yield Improvement
- Significant help for experts in decision making

The Human Expertise is key for Data mining:
- Definitions of the relevant parameters for analysis
- Validation of Root Causes & Corrective Actions
- Learning and Deployment of the Knowledge Discovery found in Database (KDD)
Thanks

- A. Chauvet (Altis)
- A. Tran (Altis)
- B. Scibilia (Altis)
- O. Richard (Altis)
- J. Walsh (Altis)

- C. Doret (CFA AFIA)
- G. Philippon (CFA AFIA)
- P. Federl (Infineon)
- U. Nehring (Infineon)