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Interfacing a General Factoring Program with SAS: PROC MUFACT
Richard J. Hofmann and Jeseph C. Simpson
Miami University*

Part T Introduction

The MUFACT procedure performs factor analy-
ses and component analyses. The user may choose
fram a number of initial factoring metheds,
several transformation methods, and several ways
of specifying SAS data set output files.

MUFACT may he applied to an ordinary SAS
data set (containing raw data), a correlation
matrix or a factor matrix. If the procedure is
applied to raw data, MUFACT will exclude com-
pletely an observation having a missing value
for a variable in the analysis. If the user
wants to build the correlation matrix different-
1y, he can (for example) use the COR procedure
and submit the results to MUFACT. Memory avail-
able is the enly limit to the numker of vari-
ables that MUFACT will analyze.

MUFACT will operate with both singular and
nonsingular data sets as well as with small and
large samples., Defaults are set internally for
singular matrices and small data sets. Second
order factor analyses are supported. External
communality estimate is supported insofar as
the input data are rescaled prigr to using
MUFACT.

Part II OQutput Briefs

Partial and Multiple Correlations

Guttman (1953) has stated that one of the

fundamental requirements of common factor anpaly--

515 is that a representative psychometric sample
be utilized in the anaTysis. Psychometric sam-
pling refers to the sample of variables as oppo-
sed to subjects. Specifically Guttman states
that for a sample of N variables the (N-2)th
partial correlation between any palir of varia-
bies should approach zero. The 1jth off-dia-
gonal entry of this matrix represents the cor-
relation between variables i and j with the
effects of the other (N-2} variables partialed
cut.

In the diagonal of ‘this matrix is the mul-
tiple correlation. The square of this multiple
carrelation represents the proportion of the
variance of the variable that can be predicted
by a Tinear regression equation utilizing the
other (N-1) variables as predictors. The '
squared mutliple correlation is also a lower
bound- to the reliability of a variable.

Measuring Variable and Total Sampiing Adequacy

These indices (MSA} are based upon Guttman's
{1953]) previously noted assumption for common
factor analysis. The indices were developed by
Kaiser (1970} and represent the efficiency with
which the variable sample has been selectad

with regard to the other variables. We note how

well a variable fits in with the other varfables

and how well the total composite of variables
represent a psychometric sample.

Kaiser and Rice (1974) and Dziuban and Shir-
key {1976) suggest that this value should be
greater than .50 in order for the data to be
acceptable for factor analysis. The index assum-
es a maximum value of unity. This index has gen-
erated some controversy and should not be accept-
ed in a1l instances without question as it can be
demonstrated that for certain types of correla-
tion matrices the M5A indices will be Tower than
.50 even with good factoer recovery.

Initial Factor Matrix

Interestingly the initial factor ma-
trix is mainly of historical interest as it is
usually rotated or transformed immediately after
it has been obtained. One of the major problems
in factor analysis is determining the number of
factors, The facter analytic technigue name im-
age analysis, alpha factor anlaysis, components
analysis {complete or incomplete) or whittle
factor analysis is theoretically indicative of
the factor determining technique.

Alphz factor analysis {Kaiser & Caffrey,
1964} is concerned with psychometric sampiing.
The alpha factors in the initial factor matrix
have positive coefficient alpha's with regard to
the theoretical psychametric universe. This pro-
pirty however, is destroyed by any transforma-
tion.

Complete components 2nalysis {Hotelling,
1933) determines components in a hierarchical
fashion. The first component explains as much
of the intercorrelations, or variance, as is pos-
sibla with a single ccmponent. The second com-
ponent has a correlation of zerp with the first
component and explains as much of the remzining
variance as is possibTe. Each component is de-
termined such that it has an intercorrelation of
zero with all other components--yet explains or
accounts for as much of the intercorrelations
remaining correlations as is possible. Compon-
ents are determined until all of the variance
has been accounted for. Unless one has linear
dependency, a variable with a2 multiple correla-
tion of unity--a singular matrix, thare will be
as many components as there are original varia-
bles. Program MUFACT checks for linear depen-
dence and prints out a full page message if it
exists.

The incomplete model is a hybridization of
the complete compdhents model. Probably a best
reading source would be Gorsuch {1974). There
are many ways to determine an "irterpretable
number: of components. In MUFACT the incomplete
model stipulates that two criteria must be met:
all eigenvalues greater than unity are retained
{Guttman's, 1954, upper bound); at least 75 per-
cent of the variance must be explained by the
retatned efgenvalues (rule of thumb). This dual
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"eriterion" will usually determine a different
number of components than either criterion will
separately. As it turns out this criterion fre-
uency yields resylts very similar to Cattell's
?1966{ screentest.

Image analysis (Guttman, 1953; Harris, 1962)
is presently recognized as one of the most pro-
minent of all factoring methods (even though it
is not a factor analysis strictly speaking). It
is rich in theory {see Gorsuch, 1974; Muliak,
1972) and more robuyst than factor analysis. When
all of the underlying assumptions of factor ana-
lysis have been met, image analysis will yield
results similar to those of factor analysis.

When violations of the assumptions of factor
analysis have occurred then image analysis will
usually result in a better solution than that de-
termined by the common factor model. Considérable
unpublished work is presenciy being done with
image analysis that suggests a robust image var-
jation may soon be in the making for small sam-
ple analyses {a traditional problem for Tactor
analysis). In theory image analysis defines
factors having maximum canonical correlations
with the psychometric universe variables (actu-
ally it is the variable composites that the
factors define that have these maximum canonical
correlations). As with the pther factoring
methods these properties are lost when the ini-
tial factor matrix is rotated or transformed.

Whittle {1953} factor anmalysis is a wvariation
of the components model. Although the Whittle
model has been around for some time many of its
properties have only recently been recognized.

" Pruzek (1977) has.pointed out 2 number of advan-

tages associated with the Whittle model. In par-
ticular Pruzek has demonstrated that Whittle
factors are very similar to maximum 1ikelihood
factors in approximating known population struc-
tures. Yet the Whittle model does not suffer
from the problem of negative uniqueness estimates,
& consistant problem of the maximum 1ikelihood
model. -
Also included in MUFACT is a technique which
we refer to as Diagonal. Frequently one reads of
& method whereby communality estimates are placed
in the diagonal prior to a components analysis.
Such a procedure fails to adjust the off-diagonal
correlations which frequentiy leads to a non-
Gramian correlation matrix. In subroutine diagon-
al the off-diagonal correlations are rescaled by
the communality estimates. This rescaling ad-
justs the correlations such that the matrix always
remains Gramian. An incompiete components analy-
sis is then used to analyze the rescaled correla-
tion matrix,

Tests of Significance

Two tests of significance are included in MU-
FACT: testing the correlations matrix for signif-
icance and testing for the number of factors.

Both tests are based upon Bartlett's (1950) chi
square tests and my be applied with all fagtoring
procedures.

In testing the correlation matrix for signi-
ficance one is essentially testing to see jf the
correlation matrix is significantly different from
an identity matrix,
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Both of these significance tests generate
large degrees of freedom, being a function of sam-
ple size, number of variables and number of fac-
tors, and tend not to be functional with Targe
samples.

Communality Estimates

The communality estimate for each vafiabie
represents the proportien of variance for the

- yariable that can be predicted or "explained" with

-in the context of the factor solution. This
communality estimate will not change when a factor
matrix is rotated. It 15 a Tow estimate of the
variables' reliability within the context of the
factor solution. Varfables with Tow communalities
are not well explained by the factor solution and
usually have low coefficients in the selution ma-
trix. However, such variables may be measuring
something guite unlike the other variables in the
analysis and for that reason alone it should be
worthy of considerable investigation. .

Orthogonal Transformation Solutfon {Rotated Sol-
ution;

This solution matrix is determined through
a maximization of the orthomax criterion with
some weight, say gamma. Depending upon one's
choice for gamma a number of different solutions
may be obtained, e.9., varimax, quartimax, equa-
max (see Gorsuch, 1974 or Mulaik, 1972).

With an orthogonal transformation solution
some semblance of simple structure, high or zero
Toadings is obtained and the factors are inde-
pendent or uncorrelated. Usuaily a guartimax sol-
ution will Tpad a2 majority of the variables on
the first few factors at the expense of some lat-
ter factors, i.e., most of the proportionate con-
tributions of the factors will be explained by
the first several factors. The equamax selution
tends to "spread" the variance contributions
across all of the factors. The varimax solution
is a "happy" medium between the quartimax and
aquamax.

There seems to be "theoretical unrest™ in
the discussions of which of the three selutions
js the "best". Some factor analysts swear by
the varimax while other analysts swear by the
equamax. When one has a two factor solution the
varimax and equamax solutions are identical.

Even with a many factor solution it's possible to
get varimax and equamax solutions that are almost
identical. At other times there is very little
similarity between the two solutions.

n many occasions it has been noted that
those variables with large communalities seem to
have good simple structure, high or zero loadings,
while those varfables with low communalities seem
to have poor simple structure. Alternatively the
greater a variabla's communality the more influ-
ence 1t exerts on the transformation solution.

To overcome this problem, Kaiser {1958) has sug-
gested that all variables be weighted during the
transformation computations so that each has the
same comtunality {normalized). When we weight

the variables accordingly we say the solution was
computed froma normalized matrix or it is a nor-
malized matrix or it is a normal solution as op-
posed to a "raw" solution. The variables are
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“unweighted" (denormalized} after the transforma-
tion process,

The loadings in an orthogonal transformation
sglution are the correlations of the variables
with the factors. They show the relationship of
a factor to a variable. Interestingly enough
they provide a measure of the independent contri-
bution each factor makes to the wariance of the
variables and are in a very special sense stan-
dard regression coefficients of the variables on
the factors.

Oblique Solutionm {Primary Pattern Matrix) or
ObTique Solution {Refererce Structure Matrix)

The oblique solution is the general trans-
formation solution and admits tc an orthogonal.
solution as a special case. That is, in general
we seek to find a best simple structure repre-
sentation for a given group of variables and
factors regardless of the factor intercorrela-
tions (recall in the orthogonal solution the
factors are uncorrelated). If the best repre-
sentation for the factors is an orthogonal re-
presentation then the computing algorithm used
{Hofmann‘s, 1976 orthotran) will define an ortho-
gonal solution. If on the other hand the best
simple structure representation for the factors
is an oblique representation then the computing
procedure {the grthotran) will define an abligue
solution,

There are two types of oblique solution mat-
rices used in factor analysis either one of the
two is wsually reported as a solution but typi-
cally both are not reported. The primary patt-
ern is computed in the spirit of Holzinger and
Harman (1941) and Harman (1976) while the refer-
ence structure is computed in the spirit of Thur-
stone (1947). Actually one is easily determined
from the other (sse Harris and Knoall, 1948}.
Both solutions have been shown to be derived from
the same basic matrix {Hofmann, 1976) so the user
may use whichever selution is the most comfort-
able to interpret.

Primary Pattern

The pattern toadings or coefficients may be
interpreted as measures of the independent con-
tribution each factor makes to the variance of
the variables, They measure the dependence of
the variables on the dffferent factors and in
this sense they are regression coefficients of
the variables on the factors., If a factor-axis
is placed through a ¢luster of variables the
pattern coefficients for the variables within
the cluster will be zero on all other factors and
they will be relatively substantial on the factor

whose axis passes through the cluster, Sometimes

they achieve magnitudes sTightly greater than
unity {see Rummel, 1970), even though no computa-
tional error has besn made.

Reference Structure

The reference structure loadings may be inter-
preted as correlations. The lcading of a vari-
able on a factor is the correlation of the vari-
able with the factor with the effects of the
other factors partiatTed out, "It reflects the

distinct relationship 6f the factor o the vari-
able, a relationship which is -statistically -inde-
pendent of any of the other factors inithe analy -
sis. Inmasmuch as the loadings are correlations
we talk of unit loadings, correlations of one, as
opposed to the zero coefficients of a primary
solution. (see Gorsuch, 1374}.

IT one is doing an exploratory factor analy-
sis it might well be appropriate to look at all
three solutions although Cattell (1966) along
with a number of other factor analysts feels that
one should avoid using ar orthogonal solution
when obiique solutions are available.

In reading or reporting research results, it
is necessary to know exactly which matrix is pre-
sented as a factorial sclution. Because of the
overwhelming influence of Thurstone many older
studies report a reference structure solution.

Intercorrelations of the Primary Factors

The intercorvelations of the primary factors
is just an intercorrelations matrix. If one has
an orthogonal factor matrix the factor intercor-
relations are implicitly zerg and are not repor-
ted. However if the factors arve correlated,
even a "smidgeon", then their intercorrelations
are reported,

Very seldom will a factor fntercorrelation
be greater than .40 in magnitude. When the fac-
tor intercorrelations tend to be abave .40 it is
usually hypothesized that there is a second order
factor structure accounting for the intercorrela-
tions of the variables. 1In such a situation the
researcher might profit from a second order fac-
tor analysis, which is just a factor analysis
wf the intercorrelations of the primary factors
(see Gorsuch, 1974 for further discussion of
higher-order factors). The program s capable
of performing second grder or higher order analy-
SE5.

Direct and Joint Proportionate Contributions

Many researchers using a components model
have a proclivity to refer to "the amount of
varfance accounted for". In particular it may be
desirable to make certain judgments or decisions -
about a factor on the basis of its contributions.
Typically one does.not know without great diffi-
culty what the total variance of a "factored ma-
trix" really is. However we can determine the
cormen variance, the amount of variance associat-
ed with the common factors. Tn most situations
it is of interest to know what proportion of the
common variance may be explained by one factor
independently of the other factors, a direct
contribution, or that proportion of the common
variance that may be explained by the intercor-
relation, of one factorwith the other factors, a
joint contribution {which is usually very small .
and sometimes negative or that proportion of the
common variance that may be explained by both
joint and direct contributions, the total contri-
bution of a factor (see Hofmann, 1975-%).
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Variable Complexity

Frequently one likes to know whether a vari-
ahle is factorially complex {requiring many fac-
tors to describe it} or factorially simple {re-
quiring few factors to describe it). The vari-
able complexity is nothing more than an index of
the number of factors required to describe a var-
fable {Hofmana, 1976-a}. The independent clus-
tar solution for instance defines a factor sol-
ution in which all variables have a factor com-
plexity of unity.

The average complexity is simply the aver-
age number of factors describing a group of var-
jables. Alternatively it represents the average
number of factors each variable "loads" on.

A solution having a number of variables with
relatively large complexities (say anything over
2.5) is usually a poor solution. Such a solution
may be: {a} underfactored; {b) defined by an im-
proper transformation solution; (c) composed of
a group of heterogeneous variables which should
never have been factor analyzed to start with;
(d} highly unstable or non-generalizable. When
you have relatively large complexities either
abandon the solution or seek expert advice as to
why the variables are complex.

Regression Estimate Factor Scores

{In many occasions a researcher will know the
theoretical scores obtained by his sample on the
factors. That is, assuming a factor to be a hy-
pothetical variable the hypothatical score we
expect from a given sampling entityon this hypo-
thetical variable s a factor score. MWhile tech-
niques are a “dime-a-dozen" for determining fac-
tor scores we have developed a new variation
{Hofmann, 1975-a} for use in this program. This
new technique is really just a variation of an
old technique {Thurstone, 1935} that utilizes a
multiple regression approach to estimate the
factor scores. In particular this approach gen-
eralizes to either orthogonal or oblique solu-
tions: small samples or Targe samples; singular:
and non-singular matrices.

Factor Score Weight Matrix

Once a factor solution has been determined
it i5 sometimes desirable to retain the weight
matrix for determining the factor score. If you
have sampling entities not included in an analy-
5is but you wish to estimate their factor score
weight matrix provides the necessary weights.

Factor Scores

. The factor scores are estimated in standard
score form, mean of zero and standard deviation
of unity for each facior. The intarcorrelations
of the factor scores should be approximately the
same as the primary intercorrelation matrix un-
1ess one has computed an orthegonal solution, in
which case the intercorrelation of the factors
will be zero.

A reflection routine has been placed in the
program. This routine refiects the factor scores
s0 that they show the same directionality as the
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facters in the solution matrix. Thus, the inter-
correlation of the factor scores should, within
rounding errors, be identical to the factor in-
tercorrelation matrix.

Part II1 General Output

1. means, standard deviations, coefficients of
variation

2. (n-2) order partial correlations and squared
multiple correlations

3. nitfal factor matrix

4. proportionate contributions of the factors

h. communality estimates

6. chisquara tests {optional)

7. orthogonal rotation

8. proportionate contributions of orthogonal
factors

5. vwvariable complexity on orthogonal factors

10. orthoncrmal transformation matrix (optional
output)

11. eigenvalues and eigenvectors (optional output)

12. aoblique primary pattern

13. oblique reference structure

14. oblique primary intercorrelation

15. oblique primary structure (optional output)

16. var{iable complexity on oblique factors

17. proportionate contributions of oblique factors

18. measure of sampling adequacy (a) variable
{b} total

19. psychometric sampling adequacy of oblique
factors (optional output)

20. {r-2) order partial correlations and squared
multiples of factors {optional output)

21. factor score weight matrix’

22, factor scores for individuals - Printed or SAS
Data file

The Procedure MUFACT Statement
Options and Parameters

METHOD = IMAGE = & Harris {1963) type image
analysis
ALPHA a Kaiser and Caffry (1964):
alpha factor analysis
COMPONENT a traditional Hotelling
{1933) components analysis
DIAGONAL the squared mutliple cor-
relations are placed in the
. ~diagonal and the off
WHITTLE & Whittle analysis
Default is IMAGE :

FACTORS a priori number of factors.
If you are entering a fac-
tor matrix this will index
the numbar of columns. If
your estimate will create
a computational breakdown
it will be overridden by
the method. (optional} The
number will be determined
by factoring method.

(MAXORT  orthogonal quartimax

VMAXORT  orthogonal varimax

EMAXORT  orthogonal equamax

OMAXORT  some nontraditional ortho-
gonal solution

QMAXOBL  obligue analog quartimax

VMAXOBL obTique analog varimax
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Pefault
GAMMA,

Default
INPUT

Default
SCORES

Default
FACTOUT
auT
ITER
DATA
RAW
RAW2

EXTRA
SECOND

CHISO

SECONDM

Default
SECONDR

Default
SECONDG

Default
SECONDF

1]

EMAXOBL

CaR

FACTOR
RAW

PRINT

SASOUT

BGTH

oblique analog equamax

no transformation

some orthomax weight - do
not use this unless you
fully understand the or-
thomax criterion (see
Mulaik, 1972)

set ROTATE

correlation matrix punched
in Tower left triangular
form, with diagonal in-
cluded -- row by row

a factor matrix is enter-
ed row by row

raw data are entered with
each record card repre-
senting the scores for a
single subject

raw data

print the factor scores
subject by subject

write the factor scores
subject by subject on a
SAS data file -- no priht-
ing of scores (OUT must be
specified)

print factor scores and
store them on SAS data
file {out must be specif-
jed)

no factor scores are com-
puted

SAS-DATA-Set-NAME (Factor matrix

SAS

SAS

IMAGE

output)

data set name for factor
scores

maximum number of inter-
actions for alpha enalysis
Timits 1-1000. Default 30
data set name - opticnal
option to compute raw
transformation solutions
option to compute raw
second order transforma-
tion solutions

option for extra output
option for second order
factor analysis (first
order must be oblique)
performs Chi square tests
of significance for cor-
relation matrix and num-
ber of factors

identical to method--de-
fines method of anazlysis
for second order solution

method of second order
transformation identical
to ROTATE and GAMMA
orthotran

this 15 identical to GAMMA
and should not be used un-
less you understand the
orthomax criterfon {see
Mulaik, 1973)

set by SEGONDR

a priori number of second
order factors to be ex-
tracted {opticnal)

NOTES

PROC MUFACT will result in a blind image analysis
with an orthotran transformation and
no extra output

MUFACT will not create an output data set of
factor scores if a BY statement is
used

MUFACT in an expanded form, will be available

in the supplementary procedures
Tibrary

Part IV Interfacing

The MUFACT program was first installed in
SAS7Z, then converted to SAS76. In the opinfon
of this paper's authors, the Institute supplied
programs were of insufficient scope for many
factor analyses. It would be unreasonable to ex-

- pect the Institute to upgrade PROC FACTOR in the

near term because their staff {is both small and
(in the area of factor analysis) inexperienced.
Thus we decided that addition of this procedure
would materially aid SAS users who require a fac-
tor analysis tool. We say tool, because that is
what many of the SAS procedures are. They accept
input in a standard way and transform it to pro-
duce output in a standard format acceptable to
other procedures (Many analyses are the result of
stringing together several tools (procedures) in
a pipeline, each tool transforming the data in
some way. This cooperative relationship between
SAS procedures greatly magnifies the benefits of
installing agny SAS procedure. For an excellent
discussion of design criteria and use of programs
as tools see Kernigham and Plauger (1976}.

Given a suffi¢ient return for improving fac-
tor analytic abilities the question of how to im-
plement them arises. There are generally three
options, use existing PROCS and data manipulation
facilities to construct one or more MACRQ's, use
PROC MATRIX, or install a new procedure, These
options are 1isted roughly in order of increasing
effort of implementation and increasing ease of
use. In particular, prpcs can handle options
more effectively and can issue much better diag-
nostics,

Once it was decided to install PROC MUFACT,
the installation naturally divided itself into
two tasks: 1) specify/modify the stand alone
FORTRAN program to be an effective tool in the
SAS environment, and 2) provide the interface
with the 5AS supervisor.

The effort invelved in bhe first task came
as quite a surprise. The stand-alone version of
the program had many options to accept input from
differing sources. As expected, the deletion/re-
placement of this code was quite easy. However,
this program also contained complex logic to con-
trol the sequence of calculation. The program
was not a simple tool, but a complex problem sol-
ving machine. Expunging this code and installing
the good error checking code required of a tool
consumed much more effort than anticipated (an
estimated 160 man hours). Most of this effort
was incurred by R. Hofmann because J. Simpson did
not realize the importance of comnunicating the
tool concept.

Providing the interface with the SAS super-
visor could also be decomposed into sub tasks:
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1) obtain control information and data, and 2)
create & SAS output data set. The first sub-
task required only a few hours effort. 1t was
greatly simplified by the powerful and easily
invoked features of SAS 76 parseing modules, in
particular, the faciie PARM checking and ability
to control the type of variables in a list.
Errors caught in the language module use the
standard SAS convention of underlining the off-
ending informatfon and printing a terse error
message.

The second sub-task, providing for creation
of a SAS data set of factor scores, reguired
approximately 20 man hours, ten hours of coding
and ten hours to dasign the soTutfon. HWhile the
solution was quite simple, abstracting it from
the documentation was not,

Summarizing, the effort of installing MUFACT
was substantial. Much of this effort could have
been avoided if a clear idea of the structure
of a SAS proc had been stated at project incep-
tion.

The inclusion of, and error checking, for
options, parms, and variable lists is quite easy
and does not require special skills. Creation
of a 5AS output data set was made more difficult
because the documentation was not clear on this
point.
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1 WMALRO HOFTEST MUFACT CHISG SCORES=PRINTX
2 TITLE TEST CF ©ROC MUFACT;
3 TITLES THURSTONFE HNx FRIBLEM;
4 DATA HELPSR3
5 INPUT V1 L=il v2 12m22 v3 23=33 ¥4 34=44 V5 4H=55
5 VG SHuBE VT bT=77
: T £ W8 1lmll ¥% 12=22 V10 23=33 V1t 3aw44 V12 4555 V13 56=60
: 8 V14 6T=T7T
\ 9 /W15 lwll V16 12=322 VI7 2333 VIE 34was Y19 a5m55 V20 SEmE6;
B 10 LARFL
: b1 vi = x
: 12 Va2 = ¥
i 13 v3 = Z
: La V4 = XY
15 Vs = XZ
) Vée = ¥Z
1?7 V7 = SQHTIX*X + Y¥Y)
18 VB= SORTIX¥X + Z#Z)
19 VG = SQAT(Y®Y + I*7)
24 VIG = 2X + 2%
21 V11 = 2X + 22
22 V12 = 2Y + 27
23 V13 = LODG(R}
24 via = LOGIY)
25 V15 = LOG(Z} :
25 VI = Xv2 -
: 27 VI7 = SURT(X*X 4 Y*Y + Z%7)
: 28 V18 = EXP(x) .
: 29 V19 = EXP(Y} :
; 30 V20 = EXPUZ)} i
31 CARDS S ;

MOTE? DATA SET wWORK.HELPER HAS 20 OHSRERVATIONS AWD 20 VARIAPBLES.
NDTE: THE DATA STATEMENT WSFD 015 SFCONDS AND 96K

92 PROC PRINT; .
g3 PROC HOFTEST ;
NOTE: THE PROCENDURE PRINT USED 0.15 S5ECINDS AND 128K AND PRINTED PAGE L. E
33 METHND=COM# ROTATE=VWMAXQOHL GAMMA=]; :
94 PROC HOFTEST :

NOTE: THE PRIOCEDURE MUFACT USED 1.55 SECONDS AND 192K AND PRINTED PAGES 2 TO Lla.

94 METHROD=IMAGE;
95 TITLE TEST CF HIFMANNS MUFACT PROGRAM;

TEST OF PROC MUFACT

THURSTONE BOX PROSLEM
125K BYTES REQUIRED FOR THIS ANALYSIS ASSUMING A NINWSIMGULAR CORRELATION MATRIX




-
o

VARI ABLE
vl
va
vi
v
v5
V6
vT

b ~ & U & W h -

va

2

Ve

10 ¥10
11 ¥11
12 vy2
12 ¥13
14 via
15 V15
16 V16
17 VLT
18 vLE
19 vVi9
V2o

ME AN

1T.a0
Fe 50
4420
12.45
7«85
SB5
Sel2
458
Ja01
14420
12.00
D.80
Q60
Qa6
Q.24
24245
S5.51
THa.81
2663
33

20 8
NJMBER OF ENTITIES =

20 »

TESY OF PROC MUFACT 0158 FRIDAY.
THURSTONE HOX PRUOZLEM

VAR IANCE STAN. DEV. SKEWNESS KURTDSIS

40467 6238 0«02 =138 X

22.99 : 4,79 0+25 =1,33

9485 3ula 0456 ~1 .07 z

20.68 4.55 0s3% -], 05 Xy

14,03 h ‘ 3.75 D% & -, 80 Xz

10513 3.18 JeS5 - 82 YZ
Ge78 OeBE 0,17 -1.01 SORT{X*HX + YY)
Qa7 Ge82 0.l =0 + 56 SQRTL{X*X + Z%2}
C.79 0.89 =-0.14 1412 SOQRTIY#Y & Z*xZ)
627 2.50 =0.03 -] .00 2K * 2¥
547 2.34 0.0 -0 Hl 2x + 22
5e27 2450 0,03 ~1.00 2y + 2Z
B.01 0,09 “-0.37 -1.LB LOGEX}
0401 Bul2 ~0.26 -1.33 LOG(Y)
0«04 Gal9 =0.20 -l .87 LOG(Z)

“22Ee&T 15.05 Q.79 =-0,28 Xy Z
[ Q.22 =0,19 = 88 SQRTIX®K & Y®Y + 7%7})
2939.20 S4.21 De42 =1+55 EXP{X)
381.96 19«54 D82 -1.,29 EXP{¥)
47,95 6493 0485 - . B8 EXPLZ)




9

RELATION NATRIX

[= FTale MR K IR YRR NN T T B R A N

[ b bt e g e e o ot g

Nl ]
O E N

1.CCC

G262
0«.098

Q665 .

C.AB7
Cal190Q

4 % 4 = d = ¢ s
LV S I S )
VOROME =inm-d
[REL R =R R, By

oDooaCooS

17

1000
Oe?753
J.7C4
0.4E5

17

2

14000
0247
0w BES
0308
Qe 608
Qe712
0349
G-B?B
0.805
Qs 338
0.773
Qu.288
De Q78
Q4+ 198
Ge 626
Ce7L3
02240
Os S84
Qe260

2

i8

1030
Va250
D+ 090

18

1000
D248
D+8%4
Q=294
0.207
D508
Qs568
G238
D731
De795

G.097

04299
0.944
824
D4+487
Q. 097
U« 194
0991

19

1000
04205

19

1,080
0ea?77
Qe61
G.942
0+H686
0. 787
D+980
D613
Q. 701
Gs.081
Q.853
Q213

. U710

Ja?13
029

- Os881

D255

20

1.000

20

14000
Da869
Da515
Q04789
Qe&S7T
Ce308
Ca37?
Qa.771

Qea4d3
Q.329
D«.891

V+917
Cs+725
Oea7e
04273
De867

TEST OF PROC MUFACT

THURETONE HOX PROHLEM

1000
Oeany
e 345
C«387
O«519
Gs 735
J.960
Oul94
Dea35
D.HEG
Dega?
0-681
Dal?l
0.560
0.8%3

1+000
QeB38 1+000
Jebdz Q488 L0200

1Q 11

0988 027480 04720 14000
QeT19 0s951 0,602 0683 1.400
04567 Q4527 0,979 04648 Q.683
04872 04903 04250 0479% 0.739
04672 04317 0,902 0,771 0.338
0418% 04493 04620 0.208 0,734
0.658 Qe734 0,857 (Cu6Y93 0.861
04954 0900 0.770 04953 0.862
Q.813 Q875 O« 200 Gs 732 Q.T17

G+722 0.346 0827 (.804 92.3256

D210 04493 02667, 04241 0.707

sk e sk e g Ak O N T N
sk ok MO N e 0ol i o ke R
-#txilt#m#ttl*###*tt-t*
Wkl LS 2
wxn SINGULAR MATRIX =*A
R . L R
FPEYTII T T LRI EE L2 2 2 4 b s
s e sk o e e ok
EYTELLEPLE TR R 228 202

16 11

0358 FARIQAY,

La000
Ce23l
G.805
G703

Dedlé

0.749
Casl9l
Q=719
0785

ia2

13

1.000
De237
Cuidl
Ded€2
O .BG4
D937

- Da3ZE

Qs OS2

13

14

1+000
Uel24n
Ou634
G693
U175
0z4
0,312

14

FEDRUARY 4.

i5

Ls000Q
OeTH?
Os456€
Q0a105
Oul51
0898

15

1977

1€

1000
[P
Oa4 38
G.5%8
04814

Lo
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'®  INCOMPLETE COMPONENTS ANALYSIS (HOTELLING)

CUMMUL ATIVE VARIANCE

EIGENVALUE ACCCUNY ABLE vASRIANCE
1 12. 61453 C. 6307484 De6AGTHES
2 4,03697 0.,20LA8485 G.8329949
El 2.9BL40 0. 1490698 0.9BIE6LT
AN RRRBR RN SRR RANLY THE ABRGOVE USED IN FURTHER ANALYSESsuxa
T g.11556 0.0087782 D.IBT4420
5 0.09522 0. 0085605 019920038
s 0407508 0.b037538 0995876
T 0.05379 Qe UD2HBGS C,99B4ART3
a 0.020% 9 D« 00 10094 0.9994567
9 0.01050 0. 0005248 0.9999815
10 Q.00029 0+0000144 Q494999959
INCOMPLETE COMPORENTS ANALYSIS (HOTELLING) INCOMPLETE COMRCMNENTS ARALYSTS {HOTELL ING)
COMMUNALL TY ESTIMATES OALLGUE PRIMARY PATTEAR SOLUTION MATRIX({ORTHCFRAN)
¢ ‘ : , i 2 3
vl 1 0:535% vi 1 1+€01 =0.00B =0.003
Vg § %-993 vz 2 Qs01% 0.032 0.987
34 : 0'330' v3 3 w0.CCY 0.997 =0.005
by P 0.‘;-32 va & C.482 0336 Tq.,749
ye F bt Vg 3 D359 Q0.869 ~0.023
v 4 P4 vh & D.0C4 D.826 0.394
4 : Je332 vT 7 0e7T34 0Q.017 0513
va s e as va 8 0860 02408 0,006
i 1o graas ve 9 w0.00& 045068 0.753
M i i tcE vio 10 De622 04033 045633
Vh 1 o ree Vil 11 0.672 0.668 w0.011
2 2 ey viz 12 =003 Da67TL D.605
V13 1 «582 vi3 13 0585 =~Ds01a  Ga03}
¥ia. L4 Qusre via 18 =0.033 0£.093 0.969
3;2 :g 3'963 VIS 15 0s013 0.982 =0.G56
vis 12 D203 vis 16 0.290 0.726 0.3864
17 ' 01224 V17 17 0e589 04316 0,460
519 15 e via L8 0.FE7 =0.,000 =0.044
MY L3 AP vig 19 0062 =0.021 0.967
. V20 20 w0.018 0973 0,017

CHT=SQUARE TEST FOR huﬂBER_hF FACTORS IS 0.5813274D 02 ) ) )
witTH 1I3 DEGREES CF FREEDOM THE CHANCE PROBABILLITY OF OBYAINING THIS VALUE OR SOME LARGER VYALUE IS G.0000

NOTE THAY 1Y IS MOST DESIRABLE TO HAVE A NONSIGNIFICANT CHI®SGUARE. ( 4,te Jend s ool .ﬂ‘“tﬂ"hgf \‘A&,_ wug)
YARI ABLE COMPLEXITY{AFEROXIMATE NUMBER OF FACTORS THAT 4 VARIABLE LOADS ON

Vil 1 2.00Q¢C
1 V12 12 1.979

vi3 13 1.0C2

via L& L4021
vi 1 12000 vi5 15 1.007
va 2 1.0C3 viE 14 1,827
vl 3 12000 V17 17 2.313
va 4 1.712 Vi1E '8 1:004
VS 5 12405 vie 19 1.009
vE a 1.433 v20o 2o 1.001
V7 T 1791 .
va -] leé 28
Vo 9 1a749 - 1
Y10 LO 2+ 00E AVERAGE VARIABLE CLMPLEXIYTY = 1+434




3
I3
a
<
>

i
h
s
v
i
|

L

INCOMPLETE COMPONENTS ANALYSES {HOTELL ING)

0BLIQUE REFERENCE STRUCTURE SOLUTION
T FACTOR SCORE WEIGHT WATRIX

1 2 3
i 2 3

vi 1 OeS6EE =0.008 =0.003
v2 2 0.018 0.031 0,936 vl 1 =0alB9 =0,037 =0,043
vl - =0.6L% 0.970 =0.005 vz 2 0.,02% =0, 336 2+201
va 4 Os4f€ 04035 0O.711 v3i 3 0,037 0178 =0.,043
LE] ) 0«38 (=845 «(.022 v 4 =04 05F =0.0482 {Da.132
vh -] 0004 {(.804 D379 Vs =3 «-0.045 0O=142 =0.05G8
v7 7 0710 Qa017 Oa887 vE 3] Oa08€E Dalll 0«04%6
va ) 0.832 (.397 0.006 v7 T =0s 116 =0.045 0.074
vo @ =0.0Ch6 D492 0.715 va B (e t47 Oa041 w0052
vio 10 0,602 04032 0.601 v 9 0.051 (e055 D.X34
wii 1 D2G650 Da64% =501 ¥ 10 10 =006 =003 (CGal02Z2
viz 12 =0.003 Q.5632 0.574 Vil L1 ~0«102 04095 =0.0859
w13 L3 0.9582 =0u014a D.029 viz 12 . 0.850 04094 0.096
vig ia =(Jed3E Qa0Q91 0«20 Vi3 13 w0418 =1.030 =0.035
Y15 15 0a01lZ2 0Qu5955 =0.,053 CWia T4 04051 =0.023 CGa197
V1é 16 0280 04706 0345 vig [ =] Q021 0,177 =0.053
vi7 17 O-628 Q0.307 O.547 Vié 156 0.0l Q104 2.032
'aN: 1B QeSS4 =0.000 =) .042 w17 V7 =0.091 Da.0is 0. 0=
wvid 19 O0.0/0 =0,020 0.918 via 18 0,187 =0,034 =D.056¢
vap 20 =Da2Q17 Qa948 Dal16 Vid 1 Q0.028 =0,047 0,197

¥2a 20 OeCF CGa1l74 =0.037

A GENERALIZED INVERSE WAS USED.
INCOMPLETE COMPCNENTS ANALYSIS (HOTELL ING)

GIRELT AND JOINT PROECETIONATE CONTRIBUTIONS OF FACTORS TO JOT. COMMON VARIANCE

DIRECT © +  JOINT = TOATAL

1 { DaZEY) + (=0.C0L) = 0,310

2 { 0.332) + | 0.084) = 0,415

3 £ 0+4277) + (=0aD02) = 0275
ORTHOMAX CRITERION IS5 = 1.00

WETH A NOSMAL TZED MATRIX

{NCOMPLETE CNMPUONENTS ANALYS IS lHOTELLIHGI
REGRESS[ON ESTIMATE FACTOR SCCORES

! 1.3683 =1.0484 =1.1503 INCOMPLETE COMPCNENTS ANALYSIS (HOTELL ENG)
2 143353 =040243 ~1.201% NTERCORRELATIONS OF PRIMARY FACTORS
3 1+3538 =1.0374 «0.0376

5 1.3285 0.C378 =0.04857 1 2 3
5 1.3117 1.3369 =0.1418

FACTOR 1 L=0C0

iy 342094 =1 .070% =Ls1489 E:E;gg § g:ék; é:ggg 1.000
7 041857 =0.06C6 =1.201%

8 0.,2052 =1.0579 =0.0121

9 041868 0.6704 =0.0658

10 0.1B11 1+4235 =041276

11 0.2000 =141CE1 1.3682

12 0,1902 O0.08E2 1.3215

13 B.193% 1.4991 1.2638

14 wleiBB89 141255 ~1a1909

15 =1.1900 =0,0119 =1.2535

16 “1alBEY 0.06608 =0.0953

17 ~1o.1861 1.4735 =0.L640

18 m] 1578 =1.1528 1.3654

19 . =i,1788 0.0893 1.3141

20 “l 1723 1.5639 1.2523

TNCOMPLETE COMPONENTS ANALYSIS (HOTFLL ING)

69
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PRNCENUIE MLFACT USED 0.23 STCONDS AND 192X AND PRINTED PAGES LS5 TQ 18.

DATA PHYSSH (TYPE=CDRR DF=304);

TITLE *SIGHT PHYSICAL vaAaR]AB[EST

TITLEI *HARMON, MODERW FACTOR ANALYSISs 3AND EDa.* 5

a GEE PP, (Z4=]235 NIF HARMAN] YMODERM FACTOR AMALYSIS, 2ND ZD;

INBPUT NAME _ E j=H _TYPE_ b T3=H0

VARl Y=lo WARZ L17=2& VARI 25=32 VA4R4 33#40

VARS 4l=a8 vARG 49=58& VART 5T~564 VARS8 65H=T2;

LasEL

VARI=HET GHT VARZ=ARM S5PANM YARI=LENGTF JF FOREARM VARS=LENMGTH OF {OWER LEG
VARS=WELGHT vaARS= BITROCHANTERIC DIAMETER VART—CHﬁcT GIRTH VARB=CHEST wlDTH;
CAQDS;

DATA SET WNRK.PFYSE HAS 8 O4SEQAVATIONS ANG LO VARTABLES.

DATA STATEMENT USED 0 .08 SECINNDS AND 36K.

PROC PRINTS

TITLE FIGHT PHYSICAL VARIAWJLCS FACTORED FOUR- WAYSI

PROC HOF TEST . .

PRACEDURE PRINT USED 0.11 3ECONDS AND 115K AND PIINTED PAGE 19.
METHOD=TIMAGE [INPUT=CCR FOTATE=vMAXOBL ;

TITLE SIGHT PHYSICAL VARIASLES:

TITLEY INPLT IS A COARELATION MATRIX;

TITLES IMAGE ANALYSIS FILLDa D 8Y ORTHOTRAK SULUTIUN-

PRAC HOF TEST

PROCEDURE MUFACT USED 1.03 SFCONMDS AND 192K AND PRINTED PAGES 20 Ta 31.

. METHOD= ALPHA INAUT=COR ROTATE=VMAZDIL ;
BPRIOC HOFTESTY :

PRICEDURE MUFACT USED 1.32 SECONDS AND 192K AND PRI{NTED PAGES 32 TU 504
METHOD= I¥AGE IHRUT=CCR RUTATE=VNﬁIHEL=

TITLES IWNPLT IS5 A CORRELATIIN MATRIX S

TITLES IMACE FAaCTUOR EXTRACTI N FDLLOHED uyY ORTHROTRAN RITATION;

PROC HOFTEST

PRICEQUNE MUFACT USEDR 0.99 SECIANE AMD 122% AND PRINTED PAGES 51 TO &62.
HETHIND=NIAG INPUT=CCR RCTATE=VMAXCHL ;

TITLE: DIAGCKRAL FACTIR EXTRACTION FOLLOWED Y ORTHOTRAN ROTATIONG

PRAC ATFTEST

PRACEDURE MUFACT USED 1.00 SECANDS AND 192K ANG PRIATED PAGES 63 TO 75.

NETHCOO=ALPHA ROTATE=VMAKNRT;
TITLEZS alLPFpe FACTOR EXTRACTION FOLLOWED Hy ORTHOTRAM RUTATIDN'

PRACEIURE ALFACT USED 0.80 S5CONDS AKD 192K AND PH]NTED PAGES 76 TO 93,

EIGHT MPHYSICAL VARIADLES
INPUT IS A CORRELATION MATRIX

] IMAGE ANALYSIS FLCLLOWED BY DRTYHACGTRAN SOLUTION
REQUIRED FUOR THIS AMALYSIS ASSUMING A NOMN=SINGULAR CORRELATION MATRIX

IRIGINAL CIRRELATION MATRIX

VAR
VAR2
VAR
VAR 4
VARS
VAR &
VART
VAR

70

L« QODC

[HR-LT 1000

0.80%S JebOl1 1.000

0+ 856 D. 826 0.8¢1 1.000

QeaT3 C«376 Ged80 Vagdh lseQUD

Q358 24326 O«31% Qa329 Ca762 1,000

0301 Ge277 OeZ237 D.327 L-T30 D583 1,000

U382 Oeal5 O34t Os365 Q+5629 G277 Q539 L.000

BauSNs Wl



PARTIAL AND MWL TIPLF CCRIELATIONS

t 1 - 2 3 4 = 2] T a

VAaR] 1 G.303

VARZ 2 Celdat (222

VART 3 D072 0C.H84 0.895

VARG 4 Dad 76 Os 179 0.188 ND.8/8 ,

VARG k= QvlB3F =04196 0,100 0,056 Cs8E3

VARG & 0.183 =3.,005 0.027 =0,122 Cas32 Q777 :
; VART 7 =Dalafr CGa0D91 =04115 0Oel3l CatIil Qw4 Ve 750 i
3 VARA B =0 086 D248 =0.087 =0.025 Cas238 08177 Ual20 U551

1 2 3 4 & & B

INCOVPLETE IMAGE ANALYSIS {FAFRIS )

= : NG EF s z
VARLIABLRE SAMPLTING FFRICTENCY VART ABLE CIMPLEXITY(AFRPIOX IMATE NUMHEH

i 1 OF FACTCRS THAT & VARIABLE LOADS ON

::S; é gigﬁi YaRrR 1 1 talds
VA3 3 0. A8E vaQz P 1.175
VAR 4 4 O.EE7 ‘ VAR 3 l1.205
VARS 3 0s7HC ) VARS 4 te2CE
VARE & 0.0851 ' vaRS 5 1.841
VaAR? 7 0.824 : YARS 6 1.046
VARS 8 Q.88 .. . VvaAR’T, 7 1.00€

* : VAR A 8 24904

1
. FFEICIENCY = a5 1
TOYAL SAMPLIMG sFRICIFNCY 0. 8455 AVERAGE VARTABLE CEMPLEXITY = lecal

f T ANALYSIS HARRIS )
INCOMBLETE IMAGE ANAL ¢ THCOMPLETE IMAGF AMALYZIIS {HARRIS )

" L T - £ MmAa = - _ .
COMMUNALTTY ESTIMATE DHLTCUE RFFERENCE STELCTURE SOLUTION

1 2 3 4

L VAS : 8:3;& VAR 1 00936 04196 =0.043 =0.133
; VAD 3 3 0.9C7 VaR 2 2 DeBEE w0L 022 0027 Q2275
WADG a QG322 vARD 3 Q+345 L4057 =0.070 0O«266

VARG 5 DeG1E VAR A a 0.847 =0.090 Oelbé =0.171

VARG [ 0.300 -VARS s 04055 0479 0,352 =0.001

VART 7 Da+ 896 VARG [ =0.0C9 Ua752 =0.000 Os148

Y ARB A 3.7C6H VAT T =0.02€ Gad24 DuTHa Oe217

: ‘ VAR S B 04082 0258 04362 Qu43IZ

! 1 2 .3 4

SIGNIFICANCE TEST IS KOT APPROPRIATE
- INCOMPLETE IMAGE ANALYSIS {HARRIS )

INTERCORRILATIONGS OF PRIYMARY FACYTORS

45 SAMPLE YUST Of GREATER THAN

(- 3 4
FA%TDR L 1.06CC
. ; FaCcToR 2 0.35C 1000
(VAR ADLES=NUMBER OF FACTORS)/74 ¢2 FACTOR 3 0.315 0.582 1.002
FACTOR 4 U«010 =0.088 0.0LL 1,000
INCOMPLFTE IMAGE ANALYS TS (FARRIS )
CBLIOGUE DRIMARY Pat¥ceon SOLUTION MATRIX{0THOTRAN S
1 2 3 4
VAL 1 0+9£2 0,189 =0.061 =~0.134
VA2 a 04934 =0.028 0,033 0.277
VAR 3 3 DeS12 DaQ72 =0.087 0268
. VARG 4 04915 =0stla 0.205 =0.173
- VARS 5 0,080 D.508 (.43 =0:001
3 T VARS i ~0+01C Dus954 =0.,000 0O.149
3 VA7 T =0.03% 0.030 '0.940 0.017
3 VARSE 8 0.08% 0a327 0.45%2 0.435
ﬁ 71
:
:



ELGHT PHYSICAL VARIAHBLES
INPUT 1S A CORRELATIGN MATRIX
IMAEE ANALYSIS FOLLOWED BY QORTHOTRAN SOLUTION

INCCMPLETE IMAGE ANALYEIS (HARRIS )

DIRFCT AND JOINT PROFCETIONATE CONTRIBUTIONS OF FACTORS TO TOTa COMMON VARTANCE
DIFECT + JOINT = TOTAL .
1 { 0.587) + ( 0,001} = 0D.589
& { O.t82) +« ( 0.001) = 0«183
3 L Q«175) ¢ { Q.000) = D175
A [ 0«082) + t=0.,029) = {.053
TATHORAX CRITERION 15 = 1.00

WITH & NORWAL TZFD MATRIX

INCOMPLETE IMAGE ANALYELS {HARRIS )
"FACTOR SCORFE WELIGHT MATRIX

. 1 2 3 4
4 VARl S 0.342 =0.,330 0.213 =0}.963
i VAR 2 2 Ds25¢ OCu256 =0.047 1.032
: vaAl3 3 04192 =0.003 0204 0a.710

VAR 4 4 0+ 3ICE D152 =04344 =0e 847
VARS 5 -0CO0T7 =051l =0.347 =0.275
VARS [} wda, T2 m0+625 028 G047
VART T =J+0k7T O+LF m0.588 0.012
VARS A 0,048 =0,0l1 =0.21l6 0.558
1 =4 3 4

ALPMHA FACTNR AMALYSIS (KA[ISER=CAFFREY}

ITER AT 10N 7

PRTIOA ESTIMATES PRES®NT ESTIMATES DIFFEFRENCES
. OF . 0OF
COMMUNAL ITIES COMMUNAL I TIES
1 0.E3B1526 I 0.8368L205 i 0.000032
2 J.8904025 2 0. 2305722 2 =0.,00017(Q
3 C+81490014 3 0«85189302 2 0, 000071
4 d.2067604 4 Q+BOAT29] 4 0.000031
5 L+E8795411 S Cu3B802146 5 =0.000674
& . e£€393324 & De633L971L & 0.000135
7 - J«S5B24411 7 045821577 7 0.,0002493
a8 - 0= 4998355 8 0499831332 -] 0.003022
. SUM OF DIFFERENCE SQUARES =0,00000059
NUMBER OF TTERATICMKS IS T

RESIDUALS OF FINAL TWO COMMUNALILTY FESTIMATES =0,0000890002

T2

FRIOR RODTS PRESEMNT ROOTS CIFFERENCES
: 1 20430771 L 2+436760 3 GeQQ0O0L2
2 k+436035 F4 1.436038 2 =0,000003

SUM DF ROOY DIFFERENCE SUQUARES =0.,00000000
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ALPHA FACTOR ANALYSIS (5415ER-CA?FREY}
COMMUNALILITY ESTIMATES

VAR ] 1 0.B18
VARZ 2 D«891 "
VAR 3 3 C.B19
vag4. 3 0.8C7
VARS -1 C«8BR1
VARG & D.63%
VART - 7 0.582
vAR B8 a

0,500

ALPHA FACTOR ANALYSIS {KATISER=CAFFREY )

ALPHA FACTDR ANALYSIS (KAISFR=CAFFREY)
[NTERCORRELAT]ONS CF PRIMARY FACTORS.

1 2 s

FACTOR 1 1.000
FACTOR 2 D.461 1000
L 2

DBLIQUE PRIMARY PATTERR SOLUTICN MATRIX{ORTHOTRAN)

i 2
VAR | 1 04ETT 0,079
vARZ 2 0.944 =m0, 000
VARJ 3 0!9]& ‘00025
VARG a 0.873 0,055
VARS 5  =0.000 0.938
VARG 6 =0.012 Q.808
VAR? T  w0.070 0.793
VARG B 0.93 0,659
1 L2

ALPHA FACTOR ANALYSIS (KA |SFR=CAFFREY])
VAR ABLE CONPLEXITY({AFEHOXIMATE MUMBER
QF FACTORS THAT A VARLABLE LOADS ON

1.Ql¢€

VAR 1

VAR2 2 1.000
VAR3 3 1.002
VARR L] 1.007
VAR S > 1000
VARG K- 1.00C
VART T 1aD1E
VARS B

1L.04C

|
AYERAGE ‘VARIABLE COFMPLEXNEITY = 1.010

ALPHA FACTOR ANALYSIS (KAISER=CAFFREY]
OBLIGUE REFERENCE STRULCTURE SOLUTION

1 2

VAR 1 Q«778 0.070
VAR Z 2 0+838 =0,000
VARS 3 0.813 w823
YARA a Da7TE Do Q4B
VARS 5 =0,060 0.833
VARG 6 =0.011 Q.TES
VART 7 =0, 062 0.704
valg 8 0.083 0.58%

ALPHA FACTOR ANALYSIS (KATSER-CAFFRE?J

PIRECT AND JAINT PHGECFRTIONATE CONMTRIBUTICNS

1
2

DIRECT + JOINT = TOTaL
{ Ce448) + ( 0.1S6) = 0.£454
{ 03563 + {=0.,0C0) = 0.356

DRTHOMAX CRITERION IS = 1400
NITH A NORMALIZED MATRIX

ALPHA FACTOR ANALYSIS (KAISERmCAFFREY)
FACTOA SCORE WEIGHT #ATRIX

1 2
VAaR1 t =0 .243 0.0306
VARZ c2 =0,404 ~0.157
VAR 3 3 =0.192 0.078 ;
VARS * =, 199 =0,012 - :
VARS 3 =001V =U0+082 :
VARG L} =0 +0C0 =0a.162 .
VART T U009 =0,120 :
VAR S 8 G.0C3 =0.115

1 2
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