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[nterfacing a General Factoring Program with SAS: PROC MUFACT 
Richard J. Hofmann and Joseph C. Simpson 

Miami University* 

Part I Introduction 

The MUFACT procedure performs factor analy­
ses and component analyses. The user may choose 
from a number of initial factoring methods, 
severa' transformation methods, and several ways 
of specifying S~S data set output files. 

MUF~CT may be applied to an ordinary S~S 
data set (containing raw. data), a correlation 
matrix or a factor matrix. If the procedure is 
applied to raw data, MUFACT will exclude com­
pletely an observation having a missingvalue 
for a variable in the analysis. If the user 
wants to build the correlation matrix different­
ly, he can (for example) use the COR procedure 
and submit the results to MUFACT. Memory avail­
able is the only limit to the number of vari­
ables that MUFACT will analyze. 

MUFACT will operate with both singular and 
nonsingular data sets as well as with small and 
large samples. Defaults are set internally for 
Singular matrices and small data sets. Second 
order factor analyses are supported. External 
communality estimate is supported insofar as 
the input data are rescaled prior to using 
MUFACT. 

Part II Output Briefs 

Partial and Multiple Correlations 

Guttman (1953) has stated that one of the 
fundamental requirements of common factor analy-· 
sis is th.t a representative psychometric sample 
be utilfzed in the analysis. Psychometric sam­
pling refers to the sample of variables as oppo­
sed to subjects. Specifically Guttman states 
that for a sample of N variables the (N-2)th 
partial correlation between any pair of varia­
bles should approach zero. The ijth off-dia­
gonal entry of this matrix represents the cor­
relation between variables i and j with the 
effects of the other (N-2) variables partialed 
out. 

In the diagonal of this matrix is the mul­
tiple correlation. The square of this multiple 
correlation represents the proportion of the 
variance of the variable that can be predicted 
by a linear regression equation utilizing the 
other (N-l) variables as predictors. The 
squared mutliple correlation is also a lower 
bound to the reliability of a variable. 

Measuring Variable and Total Sampling Adequacy 

and how well the total composite of variables 
represent a psychometric sample. 

Kaiser and Rice (1974) and Dziuban and Shir­
key (1976) suggest that this value should be 
greater than .50 in order for the data to be 
acceptable for factor analysis. The index assum­
es a maximum value of unity. This index has gen­
erated some controversy and should not be accept­
ed in all instances without question as it can be 
demonstrated that for certain types of correla­
tion matrices the MSA indices will be lower than 
.50 even with good factor recovery. 

Initial Factor Matrix 

Interestingly the initial factor ma-
trix is mainly of historical interest as it is 
usually rotated or transformed immediately after 
it has been obtained. One of the major problems 
in factor analysis is determining the number of 
factors. The factor analytic technique name im­
age analysis, alpha factor anlaysis, components 
.nalysis (complete or incomplete) or whittle 
factor analysis is theoretically indicative of 
the factor determining technique. 

Alpha factor analysis (Kaiser & Caffrey, 
1964) is concerned with psychometric sampling. 
The alpha factors in the initial factor matrix 
have positive coefficient alpha's with regard to 
the theoretical psychometric universe. This pro­
perty however, is destroyed by any transforma­
tion. 

Complete components analysis (Hotelling, 
1933) determines components in a hierarchical 
fashion. Tne first component explains as much 
of the intercorrelations, or variance, as is pos­
sible with a single component. The second com­
ponent has a correlation of zero with the first 
component and explains as much of the remaining 
variance as is ~ssible. Each component is de­
termined such that it has an intercorrelation of 
zero with all other components--yet explains or 
accounts for as much of the intercorr.lations 
remaining correlations as is possible. Compon­
ents are determined until all of the variance 
has been accounted for. Unless one has linear 
dependency, a variable with a multiple correla­
tion of unity--a singular matrix, there will be 
as many components as there are- original varia­
bles. Program MUFACT checks for linear depen­
dence and prints out a full page message if it 
exists. --

The incomplete model is. a hybridization of 
the complete compdnents model. Probably a best 
reading source would be Gorsuch (1974). There 

These indices (MSA) are based upon Guttman's are many ways to determine an "interpretabl e 
(1953) previously noted assumption for common number: of components. In MUFACT the incomplete 
factor analysis. The indices were developed by model stipulates that two criteria must be met: 
Kaiser (1970) and represent the efficiency wifh all eigenvalues greaterthan unity are retained 
whfch the variable sample has been selected (Guttman's, 1954, upper bound); at least 75 per-
with regard to the other variables. We note how cent of the variance must be explained by the 
well a variable fits in with the other variables retained eigenvalues (rule of thumb). This dual 
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"criterion" will usually determine a different 
number of components than either criterion will 
separately. As it turns out this criterion fre­
quency yields results very similar to Cattell's 
(1966) screentest. 

Image analysis (Guttman, 1953; Harris, 1962) 
is presently recognized as one of the most pro­
minent of all factoring methods (even though it 
is not a factor analysis strictly speaking), It 
is rich in theory (see Gorsuch, 1974; Muliak, 
1972) and more robust than factor analysis. When 
all of the underlying assumptions of factor ana­
lysis have been met, image analysis will yield 
results similar to those of factor analysis. 
When violations of the assumptions of factor 
analysis have occurred then image analysis will 
usually result in a better solution than that de­
te~ined by the common factor model. Considerable 
unpublished work is presenclY being done with 
image analysis that suggests a robust image var­
iation may soon be in the making for small sam­
ple analyses (a traditional problem for factor 
analysis). In theory image analysis defines 
factors having maximum canonical correlations 
with the psychometric universe variables (actu­
ally it is the variable composites that the 
factors define that have these maximum canonical 
correlations). As with the other factoring 
methods these properties are lost when the ini­
tial factor matrix is rotated or transformed. 

Whittle (1953) factor analysis is a variation 
of the components model. Although the Whittle 
model has been around for some time many of its 
properties have only reCently been recognized. 
Pruzek (1977) has.pointed out a number of advan­
tages associated with the Whittle model. In par­
ticular Pruzek has demonstrated that Whittle 
factors are very similar to maximum likelihood 
factors in approximating known population struc­
tures. Yet the Whittle model does not suffer 
from the problem of negative uniqueness estimates, 
a consistant problem of the maximum likelihood 
model. 

Also included in MUFACT is a technique which 
we refer to as Diagonal. Frequently one reads of 
a method whereby communality estimates are placed 
in the diagonal prior to a components analysis. 
Such a procedure fails to adjust the off-diagonal 
correlations which frequently leads to a non­
Gramian correlation matrix. In subroutine diagon­
al the off-diagonal correlations are rescaled by 
the communality estimates. This rescaling ad­
justs the correlations such that the matrix always 
remains Gramion. An incomplete components analy­
sis is then used'to analyze the rescaled correla­
tion matrix. 

Tests of Significance 

Two tests of significance are included in MU­
fACT: testing the correlations matrix for signif­
icance and testing for the number of factors. 
Both tests are based upon Bartlett's (1950) chi 
square tests and my be applied with all factoring 
procedures. 

In testing the correlation matrix for signi­
ficance one is essentially testing to see if the 
correlation matrix is significantly different from 
an identity matrix. 
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Both of these significance tests generate 
large degrees of freedom, being a function of sam­
ple size, number of variab1es and number of fac­
tors, and tend not to be functional with large 
samples. 

Communality Estimates 

The communality estimate for each variable 
represents the proportion of variance for the 
variable that can be predicted or "explained" with 
-in the context of the factor solution. This 
communality estimate will not change when a factor 
matrix is rotated. It is a low estimate of the 
variables' reliability within the context .of the 
factor solution. Variables with low communalities 
are not well explained by the factor solution and 
usually have low coefficients in the solution ma­
trix. However, such "ariables may be measuring 
something quite unlike the other variables in the 
analysis and for that reason alone it should be 
worthy of considerable investigation. 

Orthogonal Transformation Solution (Rotated Sol­
ut1on) 

This solution matrix is determined through 
a maximization of the orthomax·criterion with 
some weight, say gamma. Depending upon one's 
choice for gamma a number of different solutions 
may be obtained, e.g .. , varimax, quartimax, equa­
max (see Gorsuch, 1974 or Mulaik, 1972). 

With an orthogonal transformation solution 
some semblance of simple structure, high or zero 
loadings is obtained and the factors are inde­
pendent or uncorrelated. Usually a quartimax sol­
ution will load a majority of the variables on 
the first few factors at the expense of some lat­
ter factors, i.e., most of the proportionate con­
tributions of the factors will be explained by 
the first several factors. The equamax solution 
tends to IIspreadli the variance contributions 
across all of the factors. The varimax solution 
is a "happy" medium between the quartjmax and 
.equamax. 

There seems to be "theoretical unrest" in 
the discussions of which of the three solutions 
is the "best". Some factor analysts swear by 
the varimax while other analysts swear by the 
equamax. When one has a two factor solution the 
varimax and. equamax solutions are identical. 
Even with a many factor solution it's possible to 
get varimax and equamax solutions that are almost 
identical. At other times there is very little 
similarity between the two solutions. 

On many occasions it has been noted that 
those vari.bles with large communalities seem to 
have good simple structure, high or zero loadings, 
while those variables with low communalities seem 
to have poor simple structure. Alternatively the 
greater a variable's communality the more influ­
ence it exerts on the transformation solution. 
To overcome this problem, Kaiser (1958) has sug­
gested that all variables be weighted during the 
transformation computations so that each has the 
same communality (normalized). When we weight 
the variables accordingly we say the solution was 
computed from a normalized matrix qr it is a nor­
malized matrix or it is a normal solution as op­
posed to a "raw" solution. The variables are 



"unweighted" (denonnalized) after the transforma­
tion process. 

The loadings in an orthogonal transformation 
solution are the correlations of the variables 
with the factors. They show the relationship of 
a factor to a variable. Interestingly enough 
they provide a measure of the independent contri­
bution each factor makes to the variance of the 
variables and are in a very special sense stan­
dard regression coefficients of the variables an 
the factors. 

Oblique Solution (Primary Pattern Matrix) Q[ 
Oblique Solution (Reference Structure Matrix) 

The oblique solution is the general trans­
formation solution and admits to an orthogonal 
solution as a special case. That is, in general 
we seek to find a best simple structure repre­
sentation for a given group of variables and 
factors regardless of the factor intereorrela­
tions (recall in the orthogonal solution the 
factors are uncorrelated). If the best repre­
sentation for the factors is an orthogonal re­
presentation then the computing algorithm used 
(Hofmann's, 1976 orthotran) will define ~" ortho­
gonal solution. If on the other hand the best 
simple structure representation for the factors 
is an oblique representation then the computing 
procedure (the orthotran) will define an oblique 
solution. 

There are two types of oblique solution mat­
rices used in factor analysis either one of the 
two is usually reported as a solution but typi­
cally both are not reported. The primary patt­
ern is computed in the spirit of Holzinger and 
Harman (1941) and Harman (1976) while the refer­
ence structure is computed in the spirit of Thur­
stone (1947). Actually one is easily determined 
from the other (see Harris and Knoell, 1948). 
Both solutions have been shown to be derived from 
the same basic matrix (Hofmann, 1976) so the user 
may use whichever solution is the most comfort­
able to interpret. 

Primary Pattern 

The pattern loadings or coefficients may be 
interpreted as measures of the independent con­
tribution each factor makes to the variance of 
the variables. They measure the dependence of 
the variables on the different factors and in 
this sense they are regression coefficients of 
the variables on the factors. If a factor-axis 
is placed through a cluster of variables the 
pattern coefficients for the variables within 
the cluster will be zero on all other factors and 
they will be relatlvery-siibstantial on the factor 
whose axis passes through the cluster. Sometimes 
they achieve magnitudes slightly greater than 
unity (see Rummel, 1970). even though no computa­
tional error has been made. 

Reference Structure 

The reference structure loadings may be inter­
preted as correlations. The loading of a vari­
able on a factor is the correlation of thevari­
able with the factor with the effects of the 
other factors partialrea-out: It reflectSlfhe 

distinct relationship of the factor to the vari­
able, a relationship which isstatisticallyinde­
perident of any of the other factors in the ana1y -
sols. Inasmuch as the loadings are correlations 
we talk of unit loadings, correlations of one, as 
opposed to the zero coefficients of a primary 
solution. (see Gorsuch, 1974). 

If one is doing an exploratory factor analy­
sis it might well be appropriate to look at all 
three solutions although Cattell (1966) along 
with a number of other factor analysts feels that 
one should avoid using an orthogonal solution 
when oblique solutions are available. 

In reading or reporting research results, it 
is necessary to know exactly which matrix is pre­
sented as a factorial solution. Because of the 
overwhelming influence of Thurstone many older 
studies report a reference structure solution. 

In-ter.c;:orrelations of the Primary Factors 

The intercorrelations of the primary factors 
is just an intercorrelations matrix. If one has 
an orthogonal factor matrix the factor lntercor­
relations are implicitly zero and are not repor­
ted. However if the factors are correlated, 
even a II smi dgeon II , then their intercorrelations. 
are reported. 

Very seldom will a factor intercorre1ation 
be greater than .40 in magnitude. When the fac­
tor intercorrelations tend to be above .40 it is 
usually hypothesized that there is a second order 
factor structure accounting for the intercorrela­
tions of the variables. In such a situation the' 
researcher might profit from a second order fac­
tor analysis, which is just a factor analysis 
of the intercorrelatlons of the primary factors 
(see Gorsuch, 1974 for further discussion of 
higher-order factors). The program is capable 
of performing second order or higher order analy­
ses. 

Direct and Joint Proportionate Contributions 

Many researchers using a components model 
have a proclivity to refer to "the amount of 
variance accounted for". In particular it may be 
desirable to make certain judgments or decisions 
about a factor on the basis of its contributions. 
Typically one does·not know without great diffi­
culty what the total variance of a "factored ma­
trix" really is. However we can detel'1lline the 
common variance, the amount of variance associat­
ed with the common factors. In most situations 
it is of interest to know what proportion of the 
common variance may be explained by one factor 
independently of the other factors, a direct 
contribution, or that proportion of the commOn 
variance that may be explained by the intercor­
relation, of one factorwith the other factors, a 
joint contribution' (which i.s usually very small 
and sometimes negativ~ or that proportion of the 
common variance that may be explained by both 
joint and direct contributions, the total contri­
bution of a factor (see Hofmann, 1975-b). ---
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Variable Complexity 

Frequently one likes to know whether a vari­
able is factorially complex (requiring many fac­
tors to describe it) or factorially simple (re­
quiring few factors to describe it). The vari­
able complexity is nothing more than an index of 
the number of factors required to describe a var­
iable (Hofmann, 1976-8). The independent clus­
ter solution for instance defines a factor sol­
ution in which all variables have a factor com­
plexity of unity. 

The average complexity is simply the aver­
age number of factors describing a group of var­
iables. Alternatively it represents the average 
number of factors each variable "loads" on. 

A solution having a number of variables with 
relatively large complexities (say anything over 
2.5) is usually a poor solution. Such a solution 
may be: (a) underfactored; (b) defined by an im­
proper transformation solution; (c) composed of 
a group of heterogeneous variables which should 
never have been factor analyzed to start with; 
(d) highly unstable or non-generalizable. When 
you have relatively large complexities either 
abandon the solution or seek expert advice as to 
why the variables are complex. 

Regression Estimate Factor Scores 

On many occasions a researcher will know the 
theoretical scores obtained by his sample on the 
factors. That is, assuming a factor to be a hy­
pothetical variable the hypothetical score we 
expect from a gi ven sampl ing entity on this hypo­
thetical variable is a factor score. While tech­
niques are a "dime-a-dozen~1 for determining fac­
tor scores we have developed a new variation 
(Hofmann, 1975-a) for use in this program. This 
new technique is really just a variation of an 
old technique (Thurstone, 1935) that utilizes a 
multiple regression approach to estimate the 
factor scores. In particular this approach gen­
eralizes to either orthogonal or oblique solu­
tions: small samples or large samples; singular· 
and non-singular matrices. 

Factor Score Weight Matrix 

Once a factor solution has been determined 
it is sometimes desirable to retain the weight 
matrix for determining the factor score. If you 
have sampling entities not included in an analy­
sis but you wish to estimate their factor score 
weight matrix provides the necessary weights. 

Factor Scores 

The factor scores are estimated in standard 
score form, mean of zero and standard deviation 
of unity for each factor. The intercorrelations 
of the factor scores should be approximately the 
same as the primary intercorrelation matrix un­
less one has computed an orthogonal solution, in 
which case the intereorrelation of the factors 
wi 11 be zero. 

A reflection routine has been placed in the 
program. This routine reflects the factor scores 
so that they show the same directionality as the 
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factors in the solution matrix. Thus> the inter­
correlation of the factor scores should, within 
rounding errors, be identical to the factor in­
tercorrelation matrix. 

Part III General Output 

1. means, standard deviations, coefficients of 
v.ariation 

2. (n-2) order partial correlations and squared 
multiple correlations 

3. initial factor matrix 
4. proportionate contributions of the factors 
5. communality estimates 
6. chisquare tests (optional) 
7. orthogonal rotation 
B. proportionate contributions of orthogonal 

factors 
9. variable complexity on orthogonal factors 
10. oTthonormal transformation matrix (optional 

output) 
11. eigenvalues and eigenvectors (optional output) 
12. oblique primary pattern 
13. oblique reference structure 
14. oblique primary intercorrelation· 
15. oblique primary structure (optional output) 
16. variable complexity on oblique factors 
17. proportionate contributions of oblique factors 
lB. me.sure of sampling adequacy (a) variable 

(b) total 
19. psychometric sampling adequacy of oblique 

factors (optional output) 
20. (r-2) order partial correlations and squared 

multiples of factors (optional output) 
21. factor score weight matrix . 
22. factor scores for individuals - Printed or SAS 

Data file 

The Procedure MUFACT Statement 

Options and Parameters 

METHOD = IM~GE 

ALPHA 

a Harris (1963) type image 
analysis 
a Kaiser and Caffry (1964L 
alpha factor analysis 

COMPONENT a traditional flotell ing 
(1933) components analysis 

DIAGONAL the squared mutliple cor­
relations are placed in the 

WHITTLE 
Default is IMAGE 

FACTORS 

QMAXORT 
VMAXORT 
EMAXORT 
OMAXORT 

QMAXOBL 
VMAXOBL 

diagonal and the off 
a Whittle analysis 

a priori number of factors. 
If you are entering a fac­
tor matrix this will index 
the number of columns. If 
your estimate will create 
a computational breakdown 
it will be overridden by 
the method. (optional) The 
number will be determined 
by factoring method. 
orthogonal quartimax 
orthogonal varimax 
orthogonal equamax 
some nontraditional ortho­
gonal solution 
oblique analog quartimax 
ob.lique analog varimax 
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EMAXOBL oblique analog equama. 
Default no transformation 
GAMMA some orthomax weight - do 

not use this unless you 
fully understand the or­
thomax criterion (see 
Mulaik, 1972) 

Default set ROTATE 
INPUT COR correlation matrix punched 

in lower left triangular 
form, with diagonal in­
cluded -- row by row 

FACTOR a factor matrix is enter­
ed row by row 

RA~ raw data are entered with 
each record card repre­
senting the scores for a 
single subject 

Default raw data 
SCORES : PRINT print the factor scores 

subject by subject 
SASOUT write the factor scores 

subject by subject on a 
SAS data file -- no print­
ing of scores (OUT must be 
specified) 

BOTH print factor scores and 
store them on SAS data 
file (out must be specif­
ied) 

Default no factor scores are com­
puted 

FACTOUT: SAS-DATA-Set-NAME (Factor matrix 
output) 

OUT SAS data set name for factor 

ITER = 

DATA = SAS 
RAW 

RAW2 

EXTRA 
SECOND 

CHISQ 

SECONDM = 

Default IMAGE 
SECONDR = 

Default 
SECONDG = 

Defaul t 
SECONDF = 

scores 
maximum number of inter­
actions for alpha analysis 
limits 1-1000. Default 30 
data set name - optional 
option to compute raw 
transformation solutions 
option to compute raw 
second order transforma­
tion solutions 
option for extra output 
option for second order 
factor analysis (first 
order must be oblique) 
performs Chi square tests 
of significance for COr­
relation matrix and num­
ber of factors 
identical to method--de­
fines method of analysis 
for second order solution 

method of second order 
transformation identical 
to ROTATE and GAMMA 
orthotran 
this is identical to GAMMA 
and should not be used un­
less you understand the 
orthomax criterion (see 
Mul.ik, 1973) 
set by SECONDR 
~ priori number of second 
order factors to be ex­
tracted (optional) 

NOTES 

PROC MUFACT will result in a bl ind image analysis 
with an orthotran transformation and 
no extra output 

MUFACT will not create an output data set of 
factor scores if a BY statement is 
used 

MUFACT in an expanded form, will be available 
in the supplementary procedures 
1 i brary 

Part IV Interfacing 

The MUFACT program was first installed in 
SAS72, then converted to SAS76. In the opinion 
of this paper's authors, the Institute suppli.ed 
programs were of insufficient scope for many 
factor analyses. It would be unreasonable to ex­
pect the Institute to upgrade PROC FACTOR in the 
near term because their staff is both small and 
(in the area of factor analysis) ine.perienced. 
Thus we decided that addition of this procedure 
would materially aid SAS users who require a fac­
tor analysis tool. We say tool, because that is 
what many of the SAS procedures are. They accept 
input in a standard way and transform it to pro­
duce output in a standard format acceptable to 
other procedures (Many analyses are the result of 
stringing together several tools (precedures) in 
a pipeline, each tool transforming the data in 
some way, This cooperative relationship between 
SAS procedures greatly magnifies the benefits of 
installing any SAS procedure. For an excellent 
discussion of design criteria and use of programs 
as tools see Kernigham and Plauger (1976). 

Given a sufficient return for improving fac­
tor analytic abilities the question of how to im­
plement them arises. There are generally three 
options, use existing PROCS and data manipulation 
facilities to construct one or more MACRO's, use 
PROC MATRIX, or install a new procedure. These 
options are listed roughly in order of increasing 
effort of implementation and increasing ease of 
use. In particular, procs can handle options 
more effectively and can issue much better diag­
nostics. 

Once it was decided to install PROC MUFACT, 
the installation naturally divided itself into· 
two tasks: 1) specify/modify the stand alone 
FORTRAN program to be an effective tool in the 
SAS environment, and 2) provide the interface 
with the SAS supervisor. 

The effort involved in the first task came 
as quite a surprise. The stand-alone version of 
the program had many options to accept input from 
differing sources. As expected, the deletion/re­
placement of this code was quite easy. HoweVer, 
this program also contained complex logic to con­
trol the sequence of calculation. The program 
was not a simple tool, but a complex problem sol­
ving machine. Expunging this code and installing 
the good error checking code required of a tool 
consumed much more effort than anticipated (an 
estimated 160 man hours). Most of this effort 
was incurred by R. Hofmann because J. Simpson did 
not realize the importance of communicating the 
tool concept. 

Providing the interface with the SAS super­
visor could also be decomposed into sub tasks: 

63 



1) obtain control information and data, and 2) 
create a SAS output data set. The first sub­
task required only a few hours effort. It was 
greatly simplified by the powerful and easily 
invoked features of 5AS 76 parseing modules, in 
particular, the facile PARM checking and ability 
to control the typ~ Qf variables in a list. 
Errors caught in the language module use the 
standard SAS convention of under~l ining the off­
ending information and printing a terse error 
message. 

The second sub-task, providing for creation 
of a SAS data set of factor scores, required 
approximately 20 man hours, ten hours of coding 
and ten hours to design the solution. While the 
solution was quite simple, abstracting it from 
the documentation was not. 

Summarizing, the effort of installing MUFACT 
was substantial. Much of this effort could have 
been avoided if a clear idea of the structure 
of a SAS proc ha~ been stated at project incep­
tion. 

The inclusion of, and error checking, for 
options, parms, and variable lists is quite easy 
and does not require special skills~ Creation 
of a SAS output data set was mad~ more difficult 
because the documentation was not clear on this 
point. 
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Appendix 

1 S TAT 1ST Ie. L ANALYSIS s 
":'OT~: THF JOB /ld:lNl~U647 HA.S BEE.N RUN UNDER RELEASf: 76-.2 OF SAS At SOUTKWESr OHIO REt 

1 
2 
3 

-5 
~ 
7 
e 
9 
10 
11 
12 
13 
10 
15 
16 
11 
tH 
19 
20 
21 
22 
23 
2_ 
2S 
26 
27 
2" 
29 
'>. 
31 

~AC~O HDFTESl MUFACT CHISQ 5CORES=PRINT~ 
T[TL~ "T~_S·T CF PROC MuFACT;; 
TITLE3 THURSlCN~ bnx P~aBL~~; 
01\[,<\ H£:LP,:,:q; 
INPliT Vl 1-11 '112 12 .. 22 11323-33 114 34-44 V5 4b-55 
V6 56".06 V7 07-17 
I V8 1-11 yq 12-22 VIO 23-33 Vlt 34--44 V12 45-55 VIJ 56-6ft 
\114 67-77 
I V15 1 .... 1l V16 12-22 V17 23 .... 33 VIE 34"'44 Y19 45-55 ... 2.0 ~6-66i 
LABFL 
vI ~ 

V2 = Y 
V3 L 
...... 4 ::: XY 
V5 ::: xz 
V6" YZ 
v7 Sar~T(X")I:: + 'f'-v) 
V8= SQRTIX*X + l+Z) 
V9 = SaqT(Y.Y + Z*Z) 
VI0 2)( + 2)" 
V112X+22 
VI2=-2Y-t--2Z 
Vl3 :: LDG(X) 
V14 LOG(Y~ 
VIS -= LOG(Z) 
V16:= XYZ 
VI7 SQRT(X*X + y~y + Z*Z) 
VIS ~ EXP(x) 
V19 -= EXP(V'~ 
V20 EXP(Z): 
-C~RDS; 

~OTE:' DATA SET WORK.HELPER HAS ~o OUSERVATI0NS AND 20 VARIABLES • 
.... OTE: THE DATA STATEII4E'NT l)SI:D 0.15 SE'"CONOS ~ND 9-6K. 

92 
93 

PROC PIHNT; 
P!=:10C MOF TEST 

NOTE": Tt-tE PR"JCEOURE Pr.ilNT USE~ 0.16 5_E:CO~D5 AND 128K AND PRINTED J:ilAGE 1. 

93 
94 PROC HOFTf"ST 

"'IDlE: TH= pq':JCEOU~E pr.tIJFACT U5~D 1.550 SECQ"'IDS AND 1<J2K AND PRINTED PAGES .2 fO L4. 

94 
95 

Ml:-THOO-=IMAGE; 
TITLE T~5T CF HQF~ANNS ~UFACT PROGHA~~ 

TEST OF PROC MUFACT 

Tt-tVRSTONE eOx PROBL~M 
12sK 8VTES ~EQUIREO FOR THfS ANALYSIS .ASSUMING A ~.nN-S[NGUL.AR CO~:FI:E\"ATION ",,a,TRIX 



,~~~~~"""'_ ....... ,,-' d.""·-""':"""'''''~~''-'''''''''''=-·.'''''''''~''''·:'''· ,-_~-r<'-,,~_~-,~';"-'l'"~~""'-'~C~-_~_' .' _·,,-·_·_·,·:-~,s '-"~V-' -~"":~"-~~-" :_."',": ,-."<-".;'«"..-1:."'- _~u""',",,,_ . - '~,' ,."',.. ,-, 

g: 

TEST OF PROC MUFACT 0=-58 f=-I1IDjI\Y., 

THURSTQNE HOX PROBLE~ 

'1/ AR I A.BL.E MEAN v""IANCE ST.""'. DEli .. SKEwNESS KURT[)Sl S 

VI 17.40 40.67 6.38 0.02 -1.36 X 

<1 V2 9.60 22 .. <;19 4.79 0.25 -1.33 V 

3 v3 4.20 .9.85 3.14- 0.5b "1.07 Z 

4 V4 12..45 20.68 4.55 0.34 -1.05 XV 

5 V5 7.8"5 1,+.0-3 3.75 0.46 -o.ao xz 
b 1/6 5.8S 10.13 3.18 0.55 -0.82 VZ 

7 v7 5 •• .2 0.78 0.B8 -0.17 -1.01 SQRT{ X*JC • V.'U 

8 v8 4.'58 0.67 O.a2 .. O,J9 ~O.96 SQRT{ X*X • z*z) 
9 V9 3.61 0.79 0.139 --0.14- -1.1a SQR1" tv • ..,. • Z*2. 

10 VIO 14.20 6.27 2.50 -0.03 -1.00 2X • 2 .. 

11 VII 12.00 5.41 2.34- 0.0 -O.ijl 2X • 2Z 

12: vJ2 9.80 6.21 2.50 0.0.3 -1.00 2V .. 2Z 

13 VI3 0.6Q O.Ol 0.09 -0 • .37 -I .18 L.OGOO 

14 V14 O.tf6 0.01 0.12 -0.26 -1 .3J. LOG(V. 

15 ViS 0 .. 24 0.04- 0.19 -0.20 -1.47 LQG(ZI 

16 V lu 24.45 22'c.47 I S • .()S 0.79 -0.28 XU 

1"7 V17 5.51 0.6'j 0.92 -0.19 -0.88 SQRT (X.X '" y • ..., .. Z*21 

18 VIS 76.81 .r!-939.2Q 54.2L 0 .. 42 "1.55 E~P(XI 

:19 VL9 26.63 381.'96 19.54 0.62 "1.29 ~X:P(YJ 

20 V20 8.93 47.96 6.93 Q.B5 -0.88 EXP(ZJ 
NUMBER OF ENTITIES := 20. 



,.~'!'~~~~~~"1~~~~~""~"''''W-'': ___ '"~_~':!"_-O:':>--''-~'''-~'''''_'' '.,=;.:"", ___ :J~ 

iEST OF PRO-C ~UFAC T 0::::;8 FQIOAv .. FE:;URUA~Y 4, 1977 

t'1lJR~TONE "OX P ~OMLEM 

RE'LATIa" NAT~lX 

2 3 • 5 • 7 8 9 .0 II 12 IJ ,. 15 16 

1 l.cee 
2 0.262 1.000 
3 o.agE 0.247 1,QOo 
4 0.06S o. 86~ 0.248 I.OCO 
5 O.4-e1 0.30-4 0.894 o ~ 4 77 1.00.0 
6 0.190 0.60b 0.904- 0,':;)61 O.B59 1.1.100 
1 0.859 0.712 0.207 o. q42 0.515 O.4~'1 1.000 
8 0.905 0.3039 0.504 O. ti8 6 0.789 0.545 0.838 1.000 
oj 0.231 0.878 0.669 0.787 0.057 0.a87 0.632 0.488 1.000 

10 0-.779 0.8Q5 Q.2..j6 0.980 C.50a (J.S19 0.988 0.780 0.720 1.000 
II 0.741 0.338 0.731 0.613 0.937 0.7..35- 0.719 0" 9 51 0.001.)2 0.683 1.000 
12 (J.::= t f 0.773 O.7':JS 0.701 0.771 .o.~6U Q.5f37 0.527 0.979 0.644 0.68.::1 1.0-00 
1.3 O.ge7 0.288 Q.OYI 0.0061 0.48:3 O. 19"':1 -0 .. 812 0.9 OJ 0.250 0.79~ 0.739 0.2.::11 1.000 
I. ,0.212 o. ~1-B 0.2-99 0.853 0.329 0.6,)5 0.672 0.317 0.902. 0.773 0.338 0.805 0.:237 1 .. 000 
• 5 () • 1 04 O .. I-9S o .94c ,j 0.2J-3 o. B9] O.8f4 O.18~ 0.493 0.5-20 0.20.0 0.734 O.7b3 o .IlH 0.246 1. DOO 
16 0 .. 4Eg 0.6.26 0.824- 0.710 -0.917 0.941 0.558 u.734 0.857 0.6'1..3 0.861 0.91-6 O.4f2 0.634 0 .. 787 1.000-
17 0.7-94 0.713 0.467 C;'915 C .. 125 0.681 0.954 0.900 0.770 0.953 0.862 0.749 o.a C'I- 0.69.3 O.45C 0.-8-29 
18 ·0.960 0.220 O.O-Q7 0.0.29 0.416 a'. 1 7 1 0.81-..3 0.875 0.200 0.732 0.717 0 .. 1 91 0.931 0.175 0.105 O.4:3a 
I~ O.29E 0.984- O •• ,94 0.881 0.273 0.560 0 .. 722 0.346 0.827 0.804 'J. 32 6 0.719 -o.3-2.c: O.9f:4 a. 151 G.S-t:;s 
20 O.C93 0.260 0.991 0 • .2 55 0.8001 a .8Si3 0.210 O.4~3 0.667 0.241 0.70'7 9. 7 85 O.C-';.2 0.-312 0,698 O .. 61~ 

t 2 3 .. " " 7 a 9 10 II 12 lJ 14 15 1<, 

17 .8 .9 20 

17 l .000 *****.******** •• * •••••• 
I. O.7e.3 l .o.()o *$****.*.*****.*~*****. 
.9 0.7C4 1J.250 I.OOc) ..* .. *.*~** •• **.****.*~ 
20 O.4-e5 0.090 0.2-06 1-1000 ~.. *~* 

*** S[NGULAR ~AT~IX -** 
•• * . *** 

.7 '" .9 20 .~ •• ****** •• *.**.*****. 
*~.*.*** •••• *.~.***.*** 
*********** •••• ******** 

~ 



~.,~.~_,-:-:~~...,.,.,.-.c'.---""",-~~_,;'-""""_'-'~--';'~C:'«-:"-~, ,;~,;">o;".", .. <.-',~- .. ~~~;.,"" .•. ~.-/-~ 

~ INCOM~LcrE COMPONENTS ~NALVSI$ ~HaTFlLrN~1 

erGENII.LU~ A('Cc:UN ..... AaLE \I.=I'I .. !~Ce 

• 12.-61493 
2 41003691 

CU~MULATIYE VARIANCE 

C).e.3()14t4 
O.S32'q949 
O.9Btt.:647 3 2.,'l61"'Q •• ~.$*.* •••••••• *.·.~NLV 

0.63014-64 
0.2.0184-85-
O.l.9069t1 
TH.E ,A.60VE 
0 .. OO~7782. 
Q.Q.c,l4S60G 
O.()()J75.3H 
.O.002f:18t10 
a.OOloo<'il4 
Q. OOOS2'~e 
0.O.oOOlll4 

\,OJ ILL BE USED 11\1 FURTME~ ~NA~YSES •••• 
0.98744.29 4 0.11556 

5 O.09l22 
6 '0.07508 
7 O.o537-Q 
8 0.02.0t9-
9 O.,OI()50 

.LO 0.0002:9 

!h9920036 
0.9951576 
0.99B4473 
0.9994:i61 
O.9'it9981S 
O .. 9999~Hi9 

."-'.-I":'.~', ' .", ~",j_.'C; 

~NCowP~ET~ COMPnNENlS ANA~VSIS (HOr~LlING' 

C~M~UNA~tTV ESTtMATf$ 

INC <1 """- EOT" CD M~.Q~ENT S A~A"'I'SIS C HOt ELL t NG ~ 

OFJL1QlJ~ PI:".1:IMAR'( P.A.TT,=:I=It-. SOLuT10N. M,ATRIX(ORTHc:tRIa"" 

2 " 
vi I 1.001 -010008 -0.003 
V2 2 O.Ol~ 0.-032 1:),987 
v3 3 -O.CC9 0."997 -0.005 
V4 % 0.48.2 0.'036 -0,749 
v5 " 0.:3'-.;9 0.869 -0.023 
Vb b -0 .0 C4 0.8206 0.3". 
V7 7 0.734 o. 01 7 0.513 
VB e o.eoe 0.4Q6 o,OOQ 
V9 9 -a.oot:: O .. t:.Oob 0.753 
VIO 10 0.6-.22 o. IJ33 0.633 
v I I I I 0.672 00.668 -0.011 
VI2 12 -0" 0 (3 0.671 "0.6'05 
Vl3 13 o.'ia~· -0.014. 0.0:>1 
'111'+- III -O.O2~ 0,,_093 o .-Qr;,9 
VI5 15 0.01'3 0 .. 982 -O.OSI') 
Vl6 16 0.290 0.726 O.3b4 
VI7 17 0.649 1).316 Q.4t»O 
VI8 18 0.98'1 -0.000 -0.044 
Vl9 19 0.06.2 "0.021 0.961 
V20 ao -D.018 -0.913 0.017 

Vi I O .. CHii; 

•• 2 O.91il'9 
V3 3 -o.99C 

"" • 0.9t;0 
V5 5 o.~ 6:2 
... 6 " O.'l-E!5 
V7 7 o.9~6 
V8 8 0.992 
V ... 9 0.9QO 
VIO 10 o. t;S I!! 
VlI I I O.';'iOl: 
VI~ 12 O .. ctCifi 
VIJ 13 O.SB2 
v14 I. O.1Ii14 
VIS 15 0 .. 94.e 
VI6 I. O.~63 
vI7 17 0.993 
VI" 18 0.954 
1119 19 0.959 
"..,.2Q 2j) 0.950 

1 

Cfr-lt-SQUARE TEST ,",OR "'U~BER: OF F"'CTO~S IS O.5813214D_O~ 
wliH 13) DEGREES CF FREE-DO"" "tHE tHI\"lCi! PRoe"'B1L1TY OF OBlAtNING THIS \lAa..l.E DR SOME LARGEfiit 'IAL..Ue: J5 0..0000 
NOTIt "HAY IT·IS ~OST DESI"ABL~ TO ... ve: A NONSIGNIFICANT CHl~SQ\lARE. L .. ~.~~4> ;"/I"I""ti' ... ,n~.G.-~t ~\O~) 
"'''Iii I ASLE COMPLEXITY'.A ...... -ROXlJilAfE NUMH£I=;I of FACTO~S THAT J. '!iAAlIlSLE LOADS ON 

11 ~.OOC 
12 1.q'l'-C; 
1.3 1.0CO! 
l4 1.0,t:1 
151.001 
l6 1.821 
11 2.]13 
18 litOC4 
19 1.009 
20 1.001 

'ita 
Vl2 
vl3 
VI4 

VI I 1.000 VI5 
V2 2 1 .0 C3 VI6 
v3 :) I.OQO \/17 
V4 " 1.712 \/IS 
V'" " 1,405 \/19 
V6 6 1.433 \/20 
V7 7 l.191 
V" 6 1.4219 
V9 ., 1 • 14'9 
VIO 10 2'.00S 

1 
AVERAGE VAr.RIA,el.E:. C{",PLEXll'Y l •• ~4 



III.iCOM?LETe: COt.1PCN"F.:N:TS "'''''' .. LVSIS (H(JTELL PIGI 
..... COMPLETE CO MflOI'IIENT S Af'IIALV'SIS (HIJTF:LL ING ~ 

OBL I QUF. ~EFERf:NCE Sl~U(TV:RE SOLU1[ON 
FACTOR SCOFilE ..... 5IGtH ""Al'RIX 

2 3 .. " 
VI 1 O.96e: -0.008 -0.003 
V,! 2 0.018 0.031 0,,936 VI I -0.189 -0.037 -0.043 
... 3 :1 . "O.G('r;, 0 .. 970 -0.0105 ,"2 '" O.-03t; -0.036 0.2"0. .... • 0.41: e 0.035 0.111 V3 J O.O .. H 0.178 -0.043 
115 5 0 • .3-65 0.8'45 "'0-.022 Y' • -O.05E -0.042 -0.132 
Vb " O.O()4 G.604 g.374 Y5 " -0.045 0.142 -0.058 
117 7 0.710 0.017 Q.4-87 Yf> 6 (;. il4 t -o.l.B 0 .. 046 
va " O.F!.:32 0.39-7 O.n06 V7 7 -0.IJ6 -0.04-5 O.G7 .... 
V9 <> -0.OC6 0.492 0.715 V8 " -0.141 0.041 -0.052 
\/10 1 {) O.{J02 0.032" 0.601 119 9 0.05l- 0-.. 059 0.134 
1111 11 0.650 :J .. 64-9 -O.Oll '110 10 -0.089 -0.04-3 0,102 
1"2 12 -0.0(3 0.65.2 0,574 VII 11 -0.10.:3 0.095 -0.059 
V,3 13 o. '95..:2 -O.rH4 O.02Q V •• ,. 0.050 0.-094 0 .. 0.960 
V1. ,. -0.;)32 0.09t 0.920 vi' 13 -0 •• 84 -0.039 -0.035-
~15 15 0-.OJ2 0 .. C;SS -0 .. OS3- VI4 14 0.051 -0.023 a-. 197 
vl6 16 O.2eO 0.706 0.345 VI5 15 O.03-l 0.177 -0,.05:) 
vl7 17 O.62e 0 • ..:107 D.-437 V'b '" -0.013 0.104 0 .. 032-
vl8 I B 0.95_ -0.000 "0.-042 V17 17 -0.091 0.014 O.O:::i-4 
Vlg ." O.ObO -0.020 O.9l1:i V'8 18 -iJ.187 -0.034 -0. D5l 
"'11-29 20 -0.017 O.94b 0.016 VIO 19 O.02e -0.0'47 0.197 

v20 20 0.0:19. 0 .. 174 -0.037 

.. GENERA.L 1 zED iNVERSE • AS USED • 
I NC"OfolPL~'tE CDr-tPCNF:N15 JiNALVSIS (t!OTELL ING) 

[) IR!::"CT A.NO Jr) ~NT PRO~CFrl0NATE C~NT~[8UTraNS OF rACTO~S TO ~OT. caM~QN VAR[ANCE 
DI q~CT + 

l (O.3-Il .... 
2 (0 • .332 ~ + 
3 t 0 ... 277~ + 

J-rr,..T = TOTAL 
(-O.C01. 0.310 
I 0~C84) = Q.415 
'-O.002~ = 0.275 

ORTHO~A~ CRITEAloN IS ~ 1.00 
wITH It. NORfoIALflfD MIITRIX 

I"ICO~PLE'E COMPONENTS IoNA,LVSIS IHOTZl.LIHG) 

~EG~ESSraN ESTIMATE fAC~O~ $CORES 

I 1.368'" • 1 • 04~4 "1 .. 1585 
I NCOMPLf"TE 

2 1 • .J 035.3 -0.0243 .... 1.2019-
COMPC~ENTS ,\NAoLYS1S (HOTELL l~G) 

tNTERCORRELATIONS OF PRIM.lRY FACTO~S 
3 1.3538 -1.0-374- -0 .. 0",76 

4 1 • .3285 o. C3 78 "0 .. Q857 2· 3 

5 1.3.11.7 1 • J 3 eq "'0.141 a 
FACTOR , 1.0CO 

" 0 .. 2094 "1.010';;J. -1 .. 14ay. F AC TO~ 2 0.111 J .000 
FACTOR 3 0,247 0.223 1.000 

7 o e1 857 -O.OOC6 -1.2:014 

" :(h2052 -1.0579 "0 .. 0121 

.. OtlB.bE<: O."07C4- -0-.065R 

10 o. t 811 1.4235 -O.1?.15 

It 0.2000 -l.IC51 1.3682 

.2 O.lQ02 O.OS!"2 1.3215 

, 3 0.1933 1 .. 4Q"1 1.2636 

•• -1.t6Bq -1 .. 12-;5 -1.19Q9 

'5 -1.1900 -0 .. 011'9 -1.2&"35 

.6 -1.1859 0 • .06.0-8 -0.0953 

17 -1.1B61 1.41~5 -0.1640 

.a ""'1.1678 -1.16.28 1.3654-

,9 -1.118-0 o.a-e9J 1,31'\1 

20 -L.1723 1.5639 1 .2523 

69 



t 
ie 

t 
l 

70 

'10TE: TH~ Pf~f:C!=9UqE' ~uFI\Cr USESl 0.2.3 5~CO""DS A"D, L-Q2K AND PRINTED.PAGES L5 TO 18. 

97 
9~ 
99 
100 
101 
102 
103 
104 
105 
lo~ 
101 

DATA PHYS8 ('''''PE.;;;:"C("1o~~ bF=:104'i 
TlTLE ~~IG~T PHYSICAL VARIAeL~S' 
TITLE] tHA~M(N. MDDF~N FACT~q ANALYSIS. 3~D 20. 9 ; 

* SeE PP. l.24-125 OF t-t"~~U .. :-..t~ ..,ODERN rACTOq ANALYSIS. 2ND =:D. 
'~PUT ~A~F $ l-~ TYPE ~ 13-80 
VAin Y·:;It> vi"1:;2 17-2. V.lf'<3 .25-32 vA~4- :)3.".40 
VA~~ 41-49 WAR6 49-56 VA~l ~'-64 VARS 65-72: 
LfI,.,EL 
VA.t<l-;o-li'=r':';HT V.dR2=ARM SPAN VAR3=LENGTI'- OF Fa~E.o\j::;iM VAf.i4·=LENGTH OF LOIII"ER LEG 
VA~5=I'JE"lGHT V.4~6=8IT"'OCiiA,NTf:""IC (}IAMETE~ \'.A.R7.::CHg~T GiRTH VAR8~CHe5T wlOTH: 
C Aq DS·; 

NOT~: DATA SET ··,.,nRK.pt-YS8 HAS B OdSE~\lATIONS ANC 10 V.o\Rl~BLE-S. 
'1iJTE: THE OAf." ·S:tATEI'<1Ef\;T US::"D U.Qb Sf:;;CIJNOS AND 961<.. 

116 
117 
118 

PR:()C p~t","f; 

TrTLE FIGHT PHy:=;rCAL VAQ[A.jLr::S FACTO~€D FOU~ wAYS. 
PROC HOf'Tf:.?T 

NOTE; THE pq:'CE~UPE ~.~INT USED 0.11 3~cnNOS ANO 11~~ AND o~rNTED PAGE 19. 

,,3 
119 
120 
121 
122 

MF~HOD=t~AGE INPUT=CCR ~OTATE~YMAxoeL; 
TITLE -=IGHT PHYSICJ\L VM-!IAdL-::S: 
TITLE) INPLT 15 A COi=lHELA.TIOI'll MATRIX; 
TITLE5 IMAG( ANALYSIS F]LLO~~D HY ORTHOTQA~ SOLUTION; 
PRQC H(lF Tf.:ST 

"I'JTf:;::; THF PRL1Cr::,)lIAE" Ml!FACT USE"D 1.0S· S~CONDS AND 19~K AND PRIf'..;TED PAG!::5 20 fO 31. 

12.2 
12·3 

~]T;:~ f He:: 

12J 
J24 
125 
12b 

"4JTr:;! THE~ 

120 
127 
12~ 

"tJT~: TH~ 

128 
129 

>.j""1TS; TH;:" 

PR,lC HDF·TES r 

J"lRJCF.DUI-JE ..... UFACf USED L .32 SE:ClJNDS Ai'.O lQ2.K· AND PRtNiE:.o PAGeS J2 TU 50. 

~~THOO~I~AGE INP1JT~CCR ~OTATE~Y~~XOaL; 
TtTLf3 INPLT rs A C0RRFLATI:JN MATRIX~ . 
TrTLE~ IMA~E F~CTQR EXT~AC'l 1~ FOLLO~EI) ~y ORT~OT~.N ~aT~TION; 
I-'RuC H('FTE·t;T 

..,q8CEJUr~ ~UF~CT US~D O.9~ SEC"JinS A~D ·L9?K A~O PRINT~D PAGES 51 fa 62. 

~::::rH'Jf1=11 lA'''; I ",PUT =C CR FIe T A fE= V~ AKOBL. i 
TITLE';; nIAGcr..AL FACT,")+< o:;;x.l~,\.CTUlN FOLLQ· ... r::O !j.Y ORTt10TRAN ;eoTATION, 
PQL1C ri'1FTf:ST 

PQ1CEDURE ~UFACT USED 1.00 SEC~NDS AND 192K AND PRINTED PAGES 63 TO 75. 

~~TH('D-::ALPI-IA. >:/0 r A Tf".=VMAXO FIT; 
TITL~~ 4LPH~ FACTOR EXTRACT[D~ F8LLO.EU ~y QRTHOT~AN RUTATlQNi 

r~Q·'C~JU~E ~lF~CT uSEO 0.80 S~C{)NOS A~D 192~ A~O P~lNTED PAGES 76 TO 93. 

EIGHT PHYSICAL VARIABLES 

t~...,pul J5 A CO"QREL~TION ~AT",IX 

IMA GE AI\IALY 5J 5 FCLLOW;;:D BY oR"rttOT·RAN SOL-oUT ION 
1;.>11' ,:WT::::S t'!E?QUIR<="O FUI=! TI-fjS o\l\IALYSIS ASSUMING A '!\ION-SINGULAR CORRELATlON ~ATRIx 

J~tGII--..JI!,L C ·l~~~L~ TI ON IV'flTRIX 

2 J 4 5 6 7 8 

VALl] 1 1.00C 
VI\;~2 2 O.E146 1.000 
VA:;:>] , 0.805 O.R81 1 .. 000 
~ArJ4 4 0.85g 0.826 0.801 l.OOO 
VA~!J 5 0.47-3 O.,j 70 O.J~O O.4.Jfi .1.(;00 
VA~ 6 " 0.3<;8 0 .. .326 0.31':1 O. J2 9 C.762 I ,0 ao 
V4.Q7 1 0 • .3 0 I 0.277 0.237 0.327 C .. 730 O.Se3 1 .. 000 
VA~9 8 a.j.B~ 0.415 O.34~ 0.365 0.029 0.51·1 O.5J9 l.OOO 

2 3 4 5 6 7 8 



I'A"ITIAL. ANn MULTIPLF C(.q~EL,!'ITION5 

2 3 5 6 7 B 

VAQ 1 1 0.90:: 
VA~2 2 0.346 0.922 
VAR3 , 0.072 O.f184 0 ... 895-
'tIA.R4 4 0.47'; 0.179 O.18B 0.888 
V AI=;! 5 b 0 .. 183 -0 .. 196 0 .. ]00 O .. U5b C.86;J 
VAR6 6 O.lO3 -1}.OO5 0 .. 027 -0.122 0.492 a. r77 
VAf'2.7 7 -0.146 0.091 -0.116- Q. 1 J L C .491 (,). uS4 0.750 
VA~8 " -O.O.e6 0.24-8 -O.O/j7 -0.025 C' .2.38 o. I 77 0.12D O.6til 

2 3 4 • 7 " 
VARIABL~ 5A~~LrNG EFFIcrENCV 

1 

INcn"'PL~TE l:vlAGE AN{}LYSIS (I-Ai="RJS 

VAPiABLE crMPL~XITY(APPQ~XI~ATE ~UM~F~ 

0F FACTC~S TH~T A VAKIA9LE L8AOS O~ 

\1.4,1:11 I 0.8124 
VA,~2 2 a.Rlb 
Vo\qo3 3 0 ... 858 
\fAR 4 4 O.tl: 7 
V/lR5 , O .. '7~O 
VAQ6 " 0 .. 1'351 
VA.R1 7 0.824 
V'\~6 B -o.,tH8 

I 
torAL S~MPlING ~FFJCIF~CY ~ 0.13455 

INCDMPLFTC IMAGE ANALYSIS (HARRiS J 

~0M~UNAL1TY ES11~ATFS 

VAJ;ll 1 0.94 I 
vA,Rz 2 0.95<;; 
VA.!;! 3 , O."-'lG7 
VAQ .. 4 O."Q~2 

VAR 5 , 0 .. '7 1 ~ 
VAR(,. 6 0.<:;100 
viJ.R7 7 0.8""6 
V 4.~8 " 0.7 C6 

t.,,":) SAMPLE ... usr dE GREIoTER ftiAN 

(VARIABLES-NUMBER OF ~ACTUR$J;J .2 

tNCO~-PLFTf; 11\.~A(,'S ANALYSIS «rA~~IS ) 

W,A,Rl I 1 • I J ~ 
VAQ2 " ;[ • l ?S 
VA~3 3 1.205 
V A,"!4 4 1.2Cf 
VAIR5 5 l .841 
\tA.~6 6 1 .. Q4<; 
VA ... 7 7 1 • COt:: 
vA,~a 8 2.CJ04 

1 
AVER4GE VARIA8L~ CC~PL~XITY 

tNCOMPLET~ IMAGF A~ALYS[S {HARRIS 1 

nBL[CU~ PFFFQ~NCE STQ~CTU~E SOLUTION 

1 2 3 

VA-ql 1 :I ... 8J6 o .l'l() -0.04:) 
V4.R 2 2 0': at!: "'0.022 0 .. 02.7 
VAR'] 3 0.8-45 0 .. 057 -O~O70 
VA~4 4 0.847 -0.090 0.164 
\(A~5 5 0.0'5-5 0.479 0.352 
VA~6 b -O.CCg 0.7';:,2 -o.ooC) 
IIA-~7 7 -o.o~t: O.{)24 o. 7~ ... 
VAP8 B 0.01:12 0.256 0 • .362 

2 3 

I NC~""'PLE~~ DoI":;E AN~LY s IS ~ HAR~ IS 

I~T~RCORP~LATl~Ns OF P~l~ARY FACTQRS 

F AC TOri 
F &\CTOR 
F AC TOR 
F "'C TO~ 

I 
2 
3 

• 
I.Dec 
O.,35c 
0.31= 
0.010 

2 

1.000 
0.582 

-0.088 
1.00J 
0.0 II 

(!6LIOUE C!q'P'1A~Y ~A,-rl,;,ql\ SOLUTION " .. A,T"'lIX(O .... TI-ICrR,6,I\I~ 

2 3 4 

vAQ-l I 0.9C2 a.185 -0.061 "0.134 
V .... ~2 2 0.934 -D.02B -0,034 0.277 
VA:.! 3 ~ 0 .. 912 0.072 -O.OBl 0.268 
,¥A,Qq. 4 -0.<.115 -O.ll'l 0.205 -0.173 
VA~5 ., -0 .. 060 o • f> 08 o.43a ·0 .. 001 
VA><6 " -O.OIC 0.954 -0.000 O. 149 
Vh.::J.7 7 -0.0311 U.030 a .940 0.017 
V~R8 8 o.oes U.327 0.452 0.435 

• 
-0.133 

0.21,:) 
0.266 

-o .. J 71 
-0.001 

0.148 
O.U 1 7 
0.432 

• 

4 

1 .000 

71 
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EiGHT PHYSICAt,. 'VARI-"BLES 

INPUT IS A CO~REL.TION MATRIX 

'M"(E A.NALYSIS ~ol-.LowEO Ely O~THOTR'N SOLUTION 

[NCC~PLET~ IMA~~ ANALYSIS (HARRIS) 

DtRFCT AND JOINT PROPCP;TlON"TE CONT~]~UTIONS Cf' f.A-·CTQRS TO T01. COM.MON VAR!(""-CE 
DIRECT + JO tNT = 'T'OT_4.L 

1 (O.Sa7) + ( C.O{]I} ~ 0.589 
2. r 0.182. + C O.OOI};:; 0.183 
J. (O.175t + (O.(JOO~ 0.175 
1& C 0.082) + «-0.029-) = 0.053 

!)~THO~Ax C~IrER10N lS = •• 00 
hlTH ~ NORMALIZED MAT~IX 

lNCO~PLETe IMAGF AN.LV~IS (H4~RIS 

FACTOR SCOP~ wEIGHT ~.TRl~ 

L 2 3 

VIJH 1 0.342 "'0.3-80 0.213 
V~R2 2 0.?-5t: 0.250 -0.047 
"A.~3 3 01- lq2 -0.003 0.204-
VAhI 4 4 0-.3C( O. 152 -O.34-tI 
VAns 5 -O .. C07 -D .. S II -0 • .)47 
"0«6 " -O.1)2~ "'0.625 0.216 
'VA~7 7 -0.0-17 0 .. l 7tI -0.688 
VARe ~ -0.046 -0.011 -0.216 

2 3 

-0.963 
1.032 
0.710 

-0.84-7 
-O.27~ 

0.04-7 
0.012 
O.!;j,S~ 

• 

AL.PHA, F4CT()R ANALVSI.s: (KA['SER-CAF'FREY I 

ITEQAT10N 7 
PRIOR ES1[MATES 

OF 
PR-ESf;:,...'" ES,.[t-tATES 

O~ 
CC~MUN"t.l TreS 

o fF'F ~Re:NCE:S 

72 

CO ,\jjM UN .A.L II IES 

I o ... E3aI5~6- I Q.8381205 1 0.000032 
2 0 .. B904025 2 0.89057.22 2 -0.000170 
3 C.81900J4 3 0.8189.302 3 0.000071 
4 0.806760. " O.B0612QJ " 0.0.00031 
5 c.e795-411 5 0.8802146 5 "'0.000674 
6 ·0.e:39332-G b 0.6391971 • 0 .. 0001'35 
7 0.5624411 7 0.5821511 1 0.000283 
8 Q.-II'X1A3S5 8 0.4998133 8 O.OOQ022 

SUM O~ 01 F'FER-E!'I.ICE SoJIUARES =0.000-00Q'59 

NUMBER OF IT'=FilATlrf>,.S IS 7 

R~SIDUAL~ OF FINAL TWO CO~MUNALITY EsT1M.TES ~O.oo~Oe90002 

PH I OR ROOTS PRESEl\r ~OOTS 

1 
2 

2: .4~6 771 
1.436035-

1 
2 

CIFFERENCEs 

2. .436760 
1.4300,)5 

1 0.000012 
..2 -O.OoOC(J03 

SUM OF ROOT DIFfERENCE SQUARES ~o.oooooooo 



,'; 

ALPH A F Ar.c'tnR .HAL YS 1 S (1('\,1 SER-CAFFfol:"EY) 

COMMUNAL1TY eSfl~alF.S 

1 

v"q l 1 O.8:;'i! 
VA'"'2 2 O.8~1 
VAR3 ~ O.8IQ 
v"q4 • O.$C7 
VAR5 5 O.SRI 
VA1<6 6 .0.630; 
VA~7 7 O.58~ 
VAAB " 0,5.0-0 

ALP'HA FACTOR ANA,LYS]S (K-,t,t5FR-"CAFFR'E'Y) 

[NTf:'RCO'RRE'L.A.T J ONS CF PI" IM~AY FACTQQS 

F' .It.eTOR 
"F AC TOQ 

1 
2 

1 2 

1.000 
0.46-1 1.0Q"o 

1 2 

ALPHA ~~CTn~ ANALYSIS ~KAJS~R-(AFFQErJ 

OBLIQUE PR1 •• ~. -OTT"-. ~-~ ~ ~~ SOLUTIO~ M.TRJX(ORTHaT~ANj 

1 2 

vAR 1 I -0. E 77 0 .. 079 
VAR2 2 -Q.944 -0. GOO V,""'R,, '3 0.916 ... 0 .. 025-
VAR4. 4 o.e 73 0.052 
'V"~ 5 5 -0.0-00 O.9J;fl 
V~R6 6 -0.012 fJ.805 
\tAR7 7 -0.070 o.7Q3 
v.~a 8 0.C93 Q.659 

2 

~LPH~ FACTOP ~NAL~SIS (~A1SE~-CAFFRFYJ 

v"'Pl,*,fjLE CDNlPLE)II lTV ("t=,-P,-IO)(tMlTE" NU~8ER 

QF "JI'" ... CfORS THAT ... VAFlIA~E \..OAOS aN 

yAq-l 1 1.Ol-f. 
\I ,,"-2 2 1. O(l 0 
'tIA~..1 3 1.002 
yAiR .. 4 l.001 
VAQS 5 1.00-0 
V~"6 6 1.000 
Y"~'1 7 I.Otf 
VAR8 8 •• a~c 

1 
~YERAGE VARIADLE C(~~ExtTv ~ 1.010 

ALPHA. FACT-OR ANA-LVSIS -(KAISER--CA-FFREY). 

OBLtOU~ ~EFERENCF. STRLCTURE SOLUTION 

Z 

V~"-l 1 o .11f a .. Ct70 
VA Q 2 2 0.838 --0.000-
Vo\R3 :I O.81~ "'0.-oZ3 
VA~4 .. O.77~ (1.046 
V A:';I $ 5 -0.000 -O.e..J3 
VAI:f6 6 -0.011 0.-7)'5 
VAR7 1 --0 .. 062- 0.704 
VA~8 a 0.083 0.585 

2 

"'LPHA FACT[)R ANA-L'r'SJS (KAfS-ER-CAFFRF.'VJ 

D1R!=:CT "",.In J'JINT 
DrFlECT .. 

PRGI=-(.J;TIONAT-F CONTPIB,jTIONS 
JOINl ~ TOTAL 

:t (O.44Bt ... ( O~I~h) ~ G.64. 
2 (0.3':)6)" (-O.OCOI = 0.356 

ORTHOMAX CRIT~RlaN 15 ~ l .. OO 
.1TH A NOR~ALrZED ~ATMIX 

,,-LPHA F",CTOR ANALYSIS (J(AtSER-CAFFREY I 

FACTOR SCORE WEIGHT ~ATRIX 

VA.~ I \ -0.24J. 0.046 
v"~2 2 -0.404 ~O .157 

\f Aq: 3 3 -0.192- 0.076 
vil~" • -.0 .. 199 -0'.:012 
YAH -S 5 -0.017 -O."/J-"-j;! 
VAq,6 " .... 0.0-00 -,0.162 
VAQ7 ,7 -0.0 (9 -0. t20 
\lA1=I8 B O.QC9 -0. 115 

• 2 
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