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ABSTRACT 

Completion over the past two years of Anno­
tate~ Computer OUtput for a number of analysis of 
variance routines has ~evealed situations whe~e 
linear mcde~ calculations for unbalanced data are 
sometimes a littie surprising or, at best, some­
what difficult to understand.. Sucb situations 
are illustrated with (i) faults in ion al<!orithm 
for repar~t~rizing with E-restrictions, (Ii) 
surna of squares rOT E-restricted models, (iii) 
least squares means and (iv) estimating variance 
components. 

L IN'IRODUCTION 

The recent preparation of JUlnotated Computer 
output (e.g., Searle et 0.1., 1978, 1980) for. 
variety of statisticalcomputer packages bas 
highlighted c~~ain quirks in linear mode2 calcu­
lations with unbalanced data (date. having uneg,ua.l 
numbers of observations in the subclasses). 
Awareness of these quirks provide! a basis for 
understanding relationships among output ootained 
from processing the same data on different com­
puting procedures. This paper illustTates some 
of' "these relationsh.ips. 

The illustl"atione al'e in terms 01' the two­
way cross-classification model, specified by two 
factors which shall be called rows- and col:wrlns. 
The model equation is either 

or 

where E(Yijk' is the expected value, OYer re~ 

peated sampling, of the k'th observa.tion, Y. ''1..1 
" 1J.fi." 

in the i'th row and j'th column of the data. In 
both (1) and (2), ~ i • • general mean, 0:. i. the 

1 
effect due to the :i 'th row, for i ~ 1, ••• , a, 
and e

j 
is the effect due to the jlth column, for 

j = 1, .~', b; and in (2), Y
ij 

ie the ~ff'ect due 

to the interaction of' the i'th row and j 'th 
0011lmIl. Thus (1) and (2) are called the no 
interaction mcde"l, and the interaction mod.e~, 
respect1vely~ 

Balanced data is where every one of the sb 
cells haa the same num.ber of observations, n say. 
Unbalanced data is where the cells have unequal 
numbers of observations, possibly including some 
empty cells; nij denotes the number of obser-

vations in the cell defined by row i and column j, 
and for Dij > 0, the k of (1) and (2) t&l< •• 
values k = I, 2j "', nij• Empty cells corre-

spond. te ni.j = O. lJhus, in general, 01.1 ::;;: O. 
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In the no interaction ruodel (~)~ the values of 
nij are often just 0 or 1; and balanced data are 

just a special case of unbalanced data with every 
n
ij 

= n. With unbalanced data there is the 

necessary distinction between situations in WhlCh 
every cell contains at least one observation 
(the all-cells-filled caBe)~ and those in which 
some cella have no data (the so:me-eIll]Jty-cells 
case ,. 

2. <:-RESTRICTIlIl MOOELS 

Linear mode1.s tha.t are not" of full :rank. are 
often reparam.eterized to be of full rank by im­
posing restrictions on the par~ters Qf the 
model. One pOJJular form of such restrictions. is 
that which is coming to be known as (e.g., 
Searle, et al. 1981) the E-restrictions. These 

"define the e:f:fects for each factor so that they 
a b 

a.dd to zero; far example, L: Cl. "" 0 a.nd I: 13. '" O. 
i~l l j=l J 

The L:-r~strictions have a long history in l~near 
model theory :for the analy"eis of balanced data.. 
They can also be used with 1Ulbalaru::ed da.ta, 
whereupon a popular algo~1thm for incorporating 
them in the calculations can be faulty when used 
on data that have empty cells. The E-r~stric­
tions also lead to peculiarities in calculating 
certain sums of squares. 

Consider a situation in which the numbers 
of ob8ervat~ons in a data grid of 3 rows and 4 
columns are as shown in Grid 1. 

Grid 1: Nwnbers of Observations 

3 - 1 2 

2 2 - -
- 2 2 4 

This set of nij-values corresponds to the exampl~ 

in Table 7.6 of Searle (1971), and to Dat. Set 5 
of the Annota.ted Computer output, Searle et B~. 
(1978, 1980). - -

The E-restricted interaction model appro­
priate to Grid 1 is, a.k.in to (2) .. 

but with the ~-reatriction9 
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"'1 + 0:
2 + &3 ~ 0 "3 = ""'1 - (l2 

~1 + ~2 + ~3 + 134 ; 0 ~4 = -~1 b2 ~3 
-ill + V13 + V14 0 'I'll Y11 

~21 + 922 0 '1'13 = "Y 13 

0 Y32 + ~33 +Y34 
rewritten as 

'I'll,. -Y
l1 - ~13 

(4 ) 
'ill + "i21 ; 0 

Y22+'Y 32 0 

Y13 + Y33 
0 

'V 14 +"Y34 0 

The dots above the symbols in (3) and (4) dis­
tinguish this model trom the unrestrictei model 
(2). The second column of equations in (4) is 
the !-restrictions of the first column rewritten 
in terns of the minimum number of parameters 
needed for the- model, namely two u's, three S's 
and two Y' B. The first two equations in the y r S 

simply emphasize that all the it's can be ex­
pressed in terms of two of' them.. This is f'ur"th(r 
demonstrated by writing the ..y IS a.s in Grid 2. 

"11 - "\'13 -"ill - "V 1, 

-"\'11 Yll - -
- -V11 -913 "'Ill + "VI, 

Note in equations (4) and in G~id 2 that the 
E-restrictions for interaction effects apply only 
to those eUects which OCCUl'" in the data. Thus 
the f~st v-equation in (4) has no '9

12 
because 

the 1,2 cell is empty. This is not the same as 
including V12 in the model and assuming it zero, 

as is done.. implicitly, in RT.Jl.I.fAGE.I' for example. 

CorreBponding to (3) and (4), expected 
values of observations in the- first row o:f Grid 1 
are 

E(Yllk) = ;,. + "1 + ~1 + Yll 

E(Y13k) ~ I.L + "1 + ~3 + Y13 

and 

Equations such as these can be set out for all 
observations 1rt Grid 1, whereupon if" we write 
those equations as 

E(r) = j.j, 

the rows of X will be as given in Table l. 
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"21 -'Ill 

Y22 = Yll 

~32 -"I'll 

Y33 -V13 

Y
34 Y11 + Y13 

Table 1! Raws of' the X-matrix for date. of Grid lJl 
using the I:~restrictiona of (4). 

No. of Column of' ic 
rows 

~1 ~2 ~3 Y11 YI3 in X ~ "1 "2 

nU ~ 3 I I 1 · 1 

nI3 ~ 1 I I · 1 1 

n14 
~ 2 1 1 -1 -1 -1 -1 -1 

n21 = 2 1 1 1 · .~ n
22 = 2 1 . 1 1 • 1 

n32 = 2 1 -1 -1 1 -1 

n33 = 2 1 -1 -1 · 1 -1 

n34 = l,. 1 -1 -1 -1 -1 -1 1 1 

2.1.. Fault. in an .~orithm 

In the first three lines of Table 1, and in 
the last two lines, the coefficient of each y is 
the product of' t~e coefficients of the a and ~ 
having corresponding 5ubscripts. For examp1e, 
in the first and last lines the coefficient .of 
Y11 is 1; in the first line th~s is the product 

of two l's which are the coefficients of ~ and 

~1; and similarly in the last line it is the 

product of two -11 s. Except for the three 
"boxed'IT values, this product algorithm holds for 
all coeffiCients of Yij'S in Table 1 - and. it is 

an algorithm that bas been known and UBed in 
computer programs for many, many years - certain ... 
ly back to 1562, to this writer~s: knowledge. 
But notice that this 8lgorithm does not hold for 
the rrboxed" values in Table 1. For exBmItle j the 
:first of these b -1 and, as the coefficient of 
y 11' the a.lgorithm. woul.d have it be the prodl1Ct 

. -of a and 1 (the coeff'icients ot ~l and ~l. in 
that line), which it i5 not. this is e. fau2t of 



.2 

the al.gorithm~ it does not apply universa.11y, 
for all unbe.l.anced da.te. seta tha.t have erupty 
cells. 

The reason fer the breakdown of the algor­
ithln. is as follows. Customary usage of the 
algorithm is based on replacing the laat eff~ct 
in each E-restr1c~1on by rndnus all the others 
therein; e.g.) rewriting &1 + &2.+ a

3 
= 0 a.s 

&3 = -&1 + Ct2 as in (4). 1be algorithm is a.lways 

a correct representation of these ~ep1acementB 
when all cella are filled. It is also correct 
when some cells are empty, :providing they ar~ not 
in the last row and column of the da.ta. Then, so 
far a8 VIS are concerned, baving empty cells is 
equivalent to having all cells filled but simply" 
deleting the y I S corresponding to empty cells. 

Having data in every cell of the last row 
and column ensures that in each Z-reatriction for 
the 'V 1 5, there is in that last row and column a Y 
(in the "",del for the dota) that can be .eplaoed 
by other ~Ia. For ex~le, in Grid I the E-re­
striction for y's in row 1 is ill + 913 + Yl4 = 0, 

from which the Y 14 of the last column can be re­

placed by --t II - Y 13' But in row 2 the Z-re­

striction for y 18 is V 11 + 'Y'12 '" 0, which con-

~ R(~,,,) - R(I.I) 

tains no y 14 corregpondirtg to the last column. 

Of course, some other, appropriate, replacement 
1s readily ascertained in easy cases like this 
one, but a ger.eral algorithm using this pro­

·cedure is usually tied to making all replacements 
from one row and one column, and so requires that 
that row and column have all cells: filled. Pre­
sumably, thiB .iB why SAS HARVEY requires data to 
ha.ve (or be resequenced to have) the last rOW and 
column with all cells filled. certa.in it is that 
when data corresponding to GTid 1 are ~ocessed 
by S.AS HARVEY, no results are forthcoming and on 
investigation one finds that the three "boxed" 
valnes of Table 1 are being taken as zero, and 
not as shown in 'rable 1.. 

(Option 9 of BESS ANOVA also req~ires one 
row and one column of the data to have all cells 
filled, and ir: this case they must be the first, 
not the last, row and column. ) 

When rows and columns are called factors A 
and B respectively, a.nd are presented to SAS GIM 
in the sequence A then B, the following well­
known sums of squares are to be found BlPong the 
output. 

~ sum of .quares due to fitting E{Yijk) ~ ~ + O:i 

<Nor and above that due to fitting E{Yijk ) ~ "' 

-= SAS GIM Type I for A$ 

= sum of squares due to Titt1ng E(Yijk) = ~ + ~i + ~j 

over and. above that due to fitting E(Yijk ) ~ ~ + ~j 

= BAS Gill Type II for A. 

(6) 

Furthermore;> although R{al ~, f3, Y) i8 a well defined symbol in this notation, it is always (in "Wlreatr1cted 
models) iderttica!ly zero, because 

where 

•••• for :ritting E(Yijk) = ~ + O:i ... ~j ... '( ij 

a b 
= E t n . . r;. 

i=l j=:l ~J lJ' 

•.•• for fitting E{Yijk) 

a b 
E E n .. Y;. 

i=l. j=l. 1J 1J' 
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(S) 

(9) 



; 
i' 

t 

as in Searle (1971, p. 292 and 252, l'espectively-). 
On substituting (8) and (9) into (7) it i. clear 
that R(o:lf.1,~,Y) i. identtcolJ..v 2ero. 

s~ of squares of this nature can also be 
considered in E-~e8tricted models, such as that 
illustrated in Section 2.1. Then we have 

Dots above symbols signify that they are from a 
rest:ricted mOdel; the subscript .r; indicat,es that 
the 'restrictions are the E-restr1ctions, and the 
asterisk indicates that when a sub-model is in­
volved it is based not on its own ~-restrictionB 
but on those of the :f'ull model from which it 
came. For this l'easoni for the 2-way classifi­
cation model with interaction, 

(11) 

because both terms apply to the f'tUl. model; but 

(12) 

because bath terms apply to sub-models of their 
corresponding full models. Detailed explanation 
i. given in Section 8 o:f Searle .t aJ.. (1981). 

Consider the following e~le. 

Table 2: Da.ta 

7,9 6 2 

8 4,8 12 

Normal equations for the full-rank, E-restricted, 
interaction model for these data turn out (loc. 
cit.) to be -

8 0 1 1 1 

0 8 1 -1 1 

1 1 5 2 1 

1 -1 2 5 0 

1 1 1 0 5 

-1 1 0 -1 2 

with solution 

10 0 -1 -1 -3 
0 10 -3 3 -1 

1 -1 -3 19 -8 -3 
72 -1 3 -8 19 0 

-3 -1 -3 0 29 

3 -1 0 3 -8 

~ 

-1 f.1 

1 " 0:1 

0 
~ 

~1 

-1 " ~2 
2 " Yll 

A 

5 '112 

3 56 
-1 -8 
0 10 

3 4 

-8 18 

19 4 

56 

-8 

10 

4 

18 

4 

7 
-10/6 

1 

-1 

10/6 

10/6 

(13) 

(14) 
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From the data in Table 2, using (8), 

2 3 
R «(.1, C>, ~,y) = E E n .. :1; . 

1=1. j=l lJ lJ 
(15) 

= 2(8") +~ ... 2" +ff' +2(~) +12" =448. 

Th~n, using the aJ..gorithm. (Searle,. 1971, p. 110) 

R = t(each so1.ution element 

X. cOl"responding element of 

r. h. B. of" normal. equations)j 

(16) 

we check the value of R(f.1,a,~,y) :from (13) and 
(1l;) as 

R«(.1,a,~,'1) = 7(56) + (-10/6)(-8) ... 1(10) 

+ (-1)4 + (10/6)(18 +4) (17) 

= 448, 

which agrees with (15). 

To illustrate (10) we first hAve, from (11) 
and (15), 

(18) 

Calculation of" ~(~'~'Y)E ~or this Comes tram 

deleting a's and the a-equations :from (13) to get 

~ 

8 1 1 1 -1 ~ 56 

1 5 2 1 0 
,. 
~1 10 

1 2 5 0 -1 ~2 4 

1 1 0 5 2 Yll 18 

-1 0 -1 2 5 
.,. 
'112 

4 

with solution 

AppJ..ving (16) to this gives 

R"(",~,Y)<: = 7(56) +t(lO) + (-t)4 

+ :ti(18) + :ti(4) 

= 428 

80 thAt in (18) 

(19) 

(20) 



r 

(21) 
~ BAS GIM me III _/_ :ror A. 

Thi1l i. not the game as R("I~,tl,v). Neither it 
should be. R(al~,~,Y) is for the unrestricte~ 
model and is identica~ zero. 

If' (al ~,~, Y)1: is for the I:-restricted model.. 

It 1. the type III output :!'rom BAS GIM. When a11 
cells are filled; it is also the out~ut of BMDP2V 
and~ providing at least one row and column or the 
data have all cells filled, it i8 also the output 
:!'rom BAS HARVEY and SPSS /\IIOVA option 9. 

When all cells are :rilled, If'(al~,~,v)I: 1. 

the numerator aum of squares for the F-statistic 
that test. H : a. + LV. j/O all equal. When some 

~ j:L 

cells are empty, the hypothesis tested is mesBY. 
Examples are given in Searle et al, (198l). 

3. WEmHTED SQUARES OF MEANS ANALYSIS 

The weighted squares of means ana.lysis is an 
analysis that is available .2.!!1r for data wherein 
all cells are filled. Ule Sl1lh of squ.a.reg for 
rows in this analysis (Searle, 2971, p. 370) is 

(22) 

where 

b 
J/w

1 
= :; (J/ni .)/tf', 

j=l J 

b a a 
X. 

10 
= I: x.j/b 

j=l 1 
I: w.i. / l: w .• 

i",l 1 l' 1=1 1. 

For the exampl.e, WI = w2 = 18/5, so that 

x[l] , t(16/3 + '2£/3) , 7 and so 

Comparing (23) with (21) suggests that 

If' (a I~, ~,~):: = S&\ (24 ) 

"Which, for aJJ. cells filled;!' is indeed the case, 
.as proven in Sear1e et aL (1981, Appendix B). 
This is why the hypotheBIs corresponding to 
~(al~,~,Y)~ i. H: ". + 'i. all equal. That i • 

.L. ~~. 

al~o the bypothe8~8 When uaing SSA
w 

as the 

numerator sum of squares of an F-statiat1c. 

4. "INDIRECT" CAIClJLATION OF SlJIofl OF SQ.UARES 

SAS HARVEY calculates certain sums of' 
eq1l.aI'es by what is sometimes called an "indirect" 
caJ.cu1ation procedure o:r, more deseriptively, the 
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"invert-part-of-the-inverse 1T :procedure. It is 
attributable to Henderson (1959). For a full 
rank model E(l) ,~, in which the solution to 
the nor.mal equations is 

the procedure is as :fOllOWB. Suppose the model 
is partitioned as 

(26) 

Then 

so defining the matrix 

the matrix o:f X!Xj' s. 

of T •• I.s. as the inverlle of 
1J 

-'-
Then, although the defi-

nition of R(!:11~2) is 

a. ca.~culation formula. using terms in (27) is 

(29) 

Derivation of (29) is shown in Sear~e (1971;1' 
p. 115) and a. new e~tenaion of it to models nDt 
of full rank is given at equation (38) of Searle 
et al. (1981). 

As illustration of (29) we ca.lcula.te 
If'(al~'~'Y)l: trolll (:L4): 

If (al~'~'Y)l: = (-10/6)(10/72)-1(-10/6) = 20. (30) 

5. SUMS OF SQtIllRES FaR THE MEAN 

R(~) = NY" is generally described as the 
correction for the mean, or as the sum of squares 
due to the mean. It is often interpreted 
(wrongly) as being a sum of squares for testing 
H : f.I. = 0, whereas its correct interpretation 
(see Searle, 1971, pages 104 and l78) _is that of 
testing H: ll(y) = O. Moreover, although NY" is 
the most usual val~ calculated as a sum of 
squares for the mean, some computing procedures 
do ea1culate other values; e.g., SAS HARVEY uses 
If' (iel 1.., M ):;. 

For the data of Table 2, 

And a.pplying the ·'invert-part-of-the-inverse rr 

calculation of (29) to (13) and (14) gives 



~. 

This is also the calculation in BMDP2V. 

The hypotheses tested by using these sums of 
squares as numerators of F-statistics a:r-e,. 

1 1 
H , ~ + 2("'1 +"'2) + -g(3~1 + 3~2 +2~3) 

1 
+ g(2Y n +V12 +Y13 +Y21 +2Y22 +V23 ) = 0 

and 

H : ~ ::; 0; i. e. , 

1 1 
H, ~ + 2("':!. +"'2) + 3(~1 +~2 +~3) 

1 
+ (S(Y11 +V12 +Y13 +Y21 +V22 +Y23) = o. 

Each of these hypotheses is less straightforward 
when there are empty cells in the da.ta. 

Of course, in other models the calculation 
based on fUll rank repa~ameterizat1on using 
Z-restrictions can give further different values. 
Thus, for the no-interaction, £-restricted model, 
the norma~ equations are equations (13) with the 
~'8 and v-equations deleted, namely 

B 0 1 1 ~ 56 
N 

0 8 1 -1 1\ -8 
with so.lution 

~ 

1 1 5 2 ~1 10 

1 -1 2 5 
.,. 

4 132 

77 0 -11 -11 56 77 

1 0 8i -27 27 -8 1 -15 

22(27) -11 -27 152 -64 10 11 16 

-11 27 -64 152 4 -16 

Hence, on applying (29) 

R"(~la,~)~ = 7[77/22(27)J-~ 

37B 1 352.8 = R"(~la,~,v)~ 

1 392 = R(~) = NT . 

Thus, althougb NT is the same for every model, 
the R"(~")~ calculation can yield different 
values when using different models on the same 
data. 
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6. POPULATION AND ESTIMATED MARGINAL MEANS 

:rb.e term "least squares meanll has been in 
the literature for at least twenty years, but it 
has never been care:f'Ully defined. As it stands, 
the expression "Least squares mean" has no im­
plicit meaning because "least squares 11 is an 
estimation procedure and those two words do not 
f'Wlction informatively as an adjective to "mean", 
be it a popula.tion mean or a sample avera.ge. 
SAS GLM (Jutput p:';!rpetuatea this confusion ... using 
the term inconsistently for both a function of 
parameters and fDr an estimate. To clarifY 
matters, Searle et al. (1980) suggest new terms: 
population marginal-mean (PMM), the pararueter 
function,. and estimated marginal mean (EMM),. the 
estimate thereof. 

Suppose in the 2-way classification that 
~ij is the popul~tion mean of the cell defined 

by the i'th row and j'th column. For the 

no interaction model: I-lij = IJ +ai +!3 j 

and for the 

(31) 

'!hen the population marginal mean (lMM) corre­
sponding to the i'th row is defined as 

(33) 

This embodies the main idea of the undefined 
term Irleast squ.ares mean!l,. that it is a. popu­
lation marginal mean; but, in contrast, PMM(ai ) 

is clearly defined with the following character­
istics. 

(i) HoIM{"1) i. a ~unction o~ popula.tion 

parameters; 

(ii) P.MM{a
i

) does not invo.lve the nijts 

of the data, and is not in any way 
contingent upon empty cells in the 
dataJ 

(iii) There is one HoIM("'i) fClI' every raw 

in the da.ta, and correspondingly one 
FNM(:!j) for every collUlDl .. and one· 

ll4M(Y ij) for every ·ce.lL 

Having defined a ftI.f, we can then consider 
its estimability: 

(a.) Because FI>IM(ai ) is .. fUnction of 

~arameters; it i8 estimable when that function 
is estimab~e. Rence a PMM is esttmab~e only 
when every lJ

ij 
in the Ff.fM is estimable} a B.fM i.s 

not eatimble, otherwise. 

(b) When a m.f is Elatlmable, its beat 
linear unbiased estimator (b. 1, u.. e.) is the same 
f'utJ.Ction of" the b.l.li. e. I s of" the Il .. I S as the 

1J 



I , 

PMM is of the Il
ij 

1 6 themaelves. For example; if 

then 

b 
E ~. jib i. estimabl.e 

j=l 1 

b 
;;0 E ~'jfo = b.l.u.e. of" }MII!(a.' (34) 

j""~ 1 1 

where EMM is the a.cronym for estimated marginal 
mean and P

ij 
is the b.lo u. e. 01' Il

ij
' Thus 

EMM(a.) ell:ista only when 0i' exists for j "" 1,. 
1 J 

.•• , b. This is true in general = an ~ being 
the b.l. u. e. of a ruM, exists only when ~ij 

exists for every lJ.
ij 

in the ENM. Hence esti­

mability of' }M,!' s and existence of' EMM.1 S depends 
upOn estimabil1ty of ~ijta. 

Three cases must be distinguished in the 
2-wSf crossed classification: 

L Without interaction model, where every 

1Jij is estimable, with ~ij -= IJ.
0 

+ a~ + f3~, :for 

Ilo, r:J.C: and 13~ being solutions to the normal 
1 J 

equstiOns. (Searle, 1971, Section 7.4). For every 
row and column the corres~onding EMM(ai ) and 

EMM(6
j
), resJ;>ectiveq, exi.t. 

2. With interaction made~, :for 
filled, where every ~.. Is estimable 

1J 
and sa every EMM: exists. 

Bll cells 
(

h . _ ) 

~i' ~ y •. J l.J. 

3. With interaction model, and same cells 
empty, where n

1j 
= Yij• only for the cells that 

contain data. EMII(".) and EI!M(~.) exist only for 
1 J 

row-a and columns, respectiv-eJ.y-, that have nO 
empty- cells. 

Ex~l.e. S1..1ppOse data are available corre­
sponcfing 0 Grid 3. 

Fr""- (33) 

and 

In the no-interaction modelt it will be 
found (Searle, loco cit.) that solutions to the 
nortr.al equationa-:ire-
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o o -
"l = Y12. 

o -
~l = Yll. - Y12• 

a~ = Y 12. +Y21• - :rU • ~o = 0 
2 

Hence 

h 

~12 =Y12." 

and 
h 

~22 ~Y + Y21. - Yll• 12· 

WId .so 

and (36) 

In the interaction model 

~ ~ 

J.lU "" YU.' 1J12 "" Y12.' 

il21 "" Y21• and U22 does not exist. 

Theref'Ore 

EMII(a1 ) ~ i(Y11. + Yl.2. ) 
and (37) 

EMM(a
2

) does not exist. 

SAS GIM gives results (36) and (37). In 
contrast, SAS HARVEY does not indicate the non­
exi.tence of EMM("1!) in (37). In.tead, it give. 

the EMM("1!) of (36). DetaH. of tbis .xa.mpl.o, 

and of other examples involving 8 nested factor, 
a mixed !nadel, a. 3-way classification, and co­
variance are shown in Searle et aL (l980). 

7. VARIANCE CrnPONENTS ESTIMATION 

Annotated Computer Output for variance com­
ponents (ACO 02) are now available for f'OUl' 

routines! SAG VARC(1(p, SAS HARVEY, BAS RANDOM, 
and EMDP-V. Some salient features of output 
from these routines are as f'ollows. 

1. SAs VARCCNP ea~cula.tes three different 
ki~ds of estimates. 

Ca) 

(b) 

Henderson ~thod 3j using the sub-method 
based on the order in which factors are 
presented, e.g., u.ing R(al~), R(~!~,a) and 
R(V! ~,o:, ~). 
MINQUE(O), being the minimum. norm qua.chatic 
'Wlbiaaed estimators (MINQUE); using prior 
values of" zero for all varie.nce components 
exce~t the errOr component. Although coru­
pute.ble for .large data sets, tbere is evi­
dence that the resulting estimates ha~ 
much larger sampling variances than do 
other eatimatea (Quaas and Bolgiano, 1977). 
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(c) MI., maximum likelihood, which always yields 
non-negative estimates but which sometimes 
changes the model in 130 doing. 

2. SAS HARVEY 

(a) cannot handle interaction models. 

(D) uses Henderson's ~thod 3, the sub-~thod 
based. on each ,factor after all others, e. g., 
R(o:l~,/3) and R(/3I~,a). 

(c) uses E-restrictions both for calculating 
Sl.IJIl.B of squares and, more importantly, for 
taking expected values of those sums of 
squares. 

3. BAS RANDOM calculates} for randOom anrl/ or 
mixed nodels as specified by the user, expected 
mt;!all squares for all. Types I,. II, III an'l. IV sums 
of squares as used in SAS Gaf. Al.though some of 
the Type III s~ of squares are the same as in 
SAS HARVEY, based as they are on !:-restricticns, 
their -expectations are not always the game. 
Expected values in &AS.HARVEY are based on !-re­
stricted models whereag those of SAS RANDOM are 
not. 

(SAS NESTED is available only for models 
that are both completely nested and completely 
random. ) 

4. In the BMDP-V routines 

{a} P2V can do calculations for repeated 
measures experiments, which are nothing 
mDre than mixed models. 

(b) P3V calculates REML (restricted maximum 
likelihood) and ML estimates and also does 
what none of the other routines do: it 
estimates the fi~ed effects of a mixed 
model ~nd it gives estimated sampling 
vsriances and covariances of estimated com­
ponente. 

(c) PBv calculates ANOVA (a.na.lysis of variance) 
estimates fOr balanced data, using t-re­
etricted models. REML estimates ~om P3V 
(for balanced dat.) equal ANIJVA estimate. 
using unrestricted models, and sO they are 
not the same as the ANOVA estimates fl"om 
rev. 
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