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QUIRES IN LINEAR MCDEL CALCULATIONS WITH UNBALARCED BATAy

8. R. Bearle
Biometrics Unit, Cornell University, Ithace, New York

ABSTRACT

Completion cver the past two years of Anno-
tated Computer Cutput for & numwber of analysis of
variance roubines has revealed asltustions where
linear model calculations for urbalanced data are
gometimes a little surprising or, at best, some-
what difficult to understard, Buch situations
are 1llustreted with (i) faults in en algorithm
for reparameterizing with E-regtrictions, (ii)
gums of agueres for D-restricted models, (1ii)
least squares means and (iv) estimating variance
components.

l, TINTRODUCTTION

The recept preparation of Annotated Computer
output (e.g., Searle et al., 1978, 1980) for a
variety of statistical computer packagesz has
highlighted certain quirks in linear model calcu-
lations with unbalanced data (deta having unegual
mmbera of observationa in the gubclasses).
Awarenegs of thege quirks provides a basis for
undergtanding relaticnghips smong output obtained
from procegaing the same dets on different com-
puting procedureg. This paper illustretes some
of ‘these relasticnshipa.

The illustrationa are in terme of the two-
way ¢rosg-classification model, specified by two
factors which shall be called rows and columna.
The model equation ig either

E(yidk) =uta tpy . 1)
ar

E(Yijk) =Wt ai + 3':] +Yij (2)

vwhere E(yijk) is the expected value, over re-
peated sampling, of the k'th cbservation, yijk’

in the 1'th row and J'th colum of the data. In
both (1) and {2), p is a general mean, o, is the

effect due to the 1'th row, for 1 =1, +.v, a,
and 'B:] is the effect due to the j'th column, for

J=1, «++, b; and in (2), 'fiJ. is the effeet due

ta the interection of the 1'th row and j'th
eolumm. Thus {1} snd (2) are called the no
interaction model, end the intersction model,
Teapectively.

Balanced dets is where every one of the &b
cells has the same number of cobservations, n say.
Tnbalanced date is where the cellz have unequal
numberg of observations, peasibly including some
empty cells; ni.:| denotes the number of obser-

vationg in the eell defined by row i and ¢olumn j,
and for ;5> 0, the k of {1) and (2) takes
valuea k =¥1, 2, ¢vv, ni;]' Empty cells corre-

spond te ni.j = 0. Thue, in general, ni.]‘ z 0,
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In the no interaction model (1), the values of
nij are often just O or 1; and balanced data are
Just a speclal case of unbalanced data with every
ni.j = . With unbalanced data there is the
necessary distinction between situations in which
every cell contains at least one cbservation

{the all-cells-filled case), and those in which
gome cells have no data {the some-empty-cells
case ).

2. F-BESTRICTED MCODELZ

Linear models that are not-of full rank are
often reparsmeterized to de of full rank by im-
posing restrictions on the parametersg of the
medel,  One popular form of auch restrictions is
that which is coming tc be 4nown as (e.g.,
Searle, et gl. 1981} the Z-restrictions. These

define the effects for each factor so that they

a b
8dd to zere; for example, Z ¢, = Oand Z B.=0.
. i i
i=1 Jj=1
The L-regtrictions have a long history in linear
model theory for the analysisa of balanced data.
They can also be used with unbalanced data,
whereupon & popular algerithm for incorporating
them in the calculations can be faulty when used
cn date that have empiy cells. The I-restric-
tions also lead to pecullarities in calculating
certaln sums of sgquares.

Consider s situation in whieh the numbers
of cbaervatlons in a date grid of 3 rows and 4
columng are as showm in Grid 1.

Grid 1: Numbers of Cbservations

3 - 1|12

2 2 - -

- 22|

This get of Ly j-va.lues corresponds to the example

in Table 7.6 of Searle (1971), and to Dete Set 5
of the Amnotated Computer output, Searie et al.
(1978, 1980).

The E-restricted interaction model sppro-
priate to Grid 1 is, akin to (2},
E(wijk) =k G Ryt Yy, (3}

but with the E-restrictions
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a, +&, + &, =0\ ["c'x3=-&1 - &,

By +By +By th =0 B, =By - By - By

Y11 * Y13 Yo =9 Yu= Y

21+ Yap =9 Y13 = V4
?32 ' ?33 Yy - ° ?rewritten as< ?lh' ) _?11 ) ?13 . . &)
ntin =0 Yp1 = Iy

Yoo + ?39 =0 '?22 = Y.ll
\"13 + -\',33 =0 ‘(32 =¥,
‘?lh + .?34 = OJ ‘3r33 = —\.'13

R CPRAEE:

The doty above the gymbols in (3) end (4) dis-
tinguish this model from the unrestricted model
(2). The second column of equations in () is
the E~-restrictions of the first column rewritien
in terms of the minimm number of parameters
needed for the model, namely two &t's, three B's
and two ¥'s. 'The firat two eq_ua.tions in the ¥'s
gimply emphasize that all the ¥'s can be ax-
pressed in terms of two of them. This is Purther
demonstrated by writing the ¥'s ag in Grid 2,

Grid 2: ¥'a for Grid 1
Y " [ Y3 " Vi3
Tyl Y| - -

B ST -"!’13 Y11 * Y3

Note in equations (&) and in @rid 2 that the
E-restrictionz for interectlon effects apply only
to these effects which occur in the data. Thus
the first v-equation in (%) has no '? » because

the l 2 eell ig empty. This iz not the pame aB
:|.ncluding Y in the model and assuming it zero,

aa 1s done, imlit:itly, in RUMMAGE, for example.

Corresponding to (3) and (h), expected
values of obgervations in the first row of Grid 1
are

Yep+a

]

E (rrl3k)
and

p+C€l+ﬁ3+\|’13

Blyp) =B +0y - By - By -

-Equations such as these can be set out for sll

observations in Grid 1, whersupon if we write
those equations ag

E(E'? =

the rowas of ¥ will be as given in Table 1,
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Table 1: Rows of the X-matr:.x for data of Grid 1,
using tke I-Testrictions of (4),

Jo. «of _ Columm of jlll_'

o [b & by B By
B, = /1T 1 . 1 . . 1 .
n13 =1 1 1 . . - 1. 1
ny, = 22 1 . -1 -1 -1 -1 =-1
h,, = 2/ . 1 1 . .]1-1 .
Nyp = gJ/r . 1 . 1 .]1 .
Bap = 21 -1 -1 . 1 .]-1 .
Ryq = g -L -1 . . 1 . -1
Ny, = b |2 -1 -1 -r -1 -1 1 1l

2.1, Faults in an algorithm

In the firat three lines of Table 1, B.nd in
the last two lines, the coefficient of ea.c‘h. y is
the product of the coefficiemts of the o and B
having corresponding subseripts., For exemple,’
in the firet and last lines the coefficient of |
‘?11 is 1; in the first line thiz is the product

of two 1's which are the coefficients of al and
{31,-. gnd similarly in the last line it ig the

product of twe -1's. Except for the three
"boxed" wvalues, this product algorithm holds for
all coefficients of '{vij's in Teble 1 — and it is

an algorithm that hes been known and used in
computer progreme for many, many years — certain-
1y beck to 1962, to this writer's knowledge,

But notice that this algorithm does not hold for
the "boxed" walues in Table 1., For example, the
firat of these is -1 and, as the coefficient of
the algorithm would have it be the product

of O and 1 {the coefficients of &, and p. in
that 1line), which it is not. This iz a fault of
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the algorithm: it does not apply universally,
for all unbalanced data sets that have empty
cells.

The reason for the breakdown of the algor-
ithm is as follows. Customsry usage of the
algorithm is based on replacing the last effect
in each D-restriction by minus all the others
therein; e.g., revriting &, + é, + 553 =0 as
aa = -c'zl + &2 as in (1), 1The slgorithm is always
a correct representation of these replacements
when all cells are filled. Tt is also correct
when some cells are smphty, providing they sre not
in the last row and columm of the date, Then, s0
far as ¥'s are concerned, having empty cells is
egquivelent to having all cells filled bub gimply
deleting the ¥'s corresponding to empty cells.

Having date In every cell of the last row
and column ensures that in ¢ach B-reatriction for
the ¥'s, there is in that last row and colum a ¥
{in the model for the data) that can be replzeed
by other T's. For exsmple, in Grid 1 the L-re-
striction for ¥'s in row L is Y v¥+¥y, =0

from which the \?lll- of the lagt column ¢sn be re-

placed by But in row 2 the Z-re-

- Yy
. - . . _ ) _
striction for ¥'s is Yy le = 0, which con

tains no \'{14 aorresponding o the last coluem.

Of courpe, some other, eppropriate, replacement
iz reedily sscerteined in essy cases like this
one, but & general elgorithm uwsing this pro-

‘cedure is usually tied to meking sll replscements

from one row and one column, and so reguires that

that row erd colwmn have all cells £illed. FPre-

sumably, this is why SAS HARVEY reguires datz to
kave {or be reseguenced to hawe) the last row and
coluwnn with all cells filled. Certain it is that
when data corresponding to Grid 1 are processed
by SAS HARVEY, no results sre forthcoming snd on
investigation one finds that the three "boxed"
values of Table 1 zre being taken ag zero, and
not as shown in Table 1.

{Opticn 9 of SPSS ANOVA also reguires one
row and one column of the data to have all cells
filled, end in this cese they must be the first,
not the lest, row and column. )

2.2,  Sumg of aqueres

When rows and columns are called factors A
and B respectively, end are presented 4o SAS (LM
in the seguence A then B, the following well-
known sums of aquares are to be found emong the
output,

Rle|u) = Rw,er) - Ru)
= sum of squares due to Fitting E{Yijk) et (5)
over and ebove that due to fitting E(y,; jk) =i
= BAS GIM Type I for A,
and
r{afu,B) = B(u,2,8) - R(u,B)
= sum of squarea due to fitting E(yijk) =Rt ot Sj ©)

aver and. above that due to fitting E(Yijk) = o+ Bj

SAS GIM Type IT for A.

Furthermore, although R(a! u,B,¥) 1a & well defined aymbol in this notation, it is alweys (in wnrestricted

models) idertically zers, because

R(] 1, B,7) = R(u,058,Y) - (1, B,v) ' ()

R(“.‘a}ﬁ}Y) = 8.5. for fitt'ing E(yi.jk) =Rt ai + ﬁj + Yi.j

where
) b
= I n..¥ .
i=1 J=1 1317213'
and
R{u,B,y) =
& b
= Z I ¥.
izl g=1 19"

20

s.8. Tor fitt F =L+ B, +y..
itting By, ) = & + B vy

EH
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as in Sesrle (1971, p. 292 and 252, respectively).
on substituting (8) and {9} into (7) it is clear
that R{afp,B,Yy) 1z idenbicelly =zero.

Sums of squares of this nature can alsc be
congidered in D-restricted models, such as that
illustrated in Section 2.1. Then we have

I#(&’h:é::l')z = r‘-*(ll.-é: é}{(:‘z “I#(Il;.ﬂ‘!'.V)z' (lOJ

Dotz above symbols slgnify that they zre from e
restricted model; the subscript ¥ indicates that
the resgtrictions are the I-restrictions, and the
agterisk indicetes thet when a sub-model is in-
volved 1t is bssed not on its cown E=-restrictions
but on those of the full model from which it
came, For this reason, for the 2-way classifi-
cation model with interaction, -

B (1,00 8,7 )5 = R,0,8,Y) (11)
because both terms spply to the full model; but

R (5, B,%)y £ R (12)

because both terms apply to sub=-medels of their
coerresponding full medela. Detalled explanation
ieg given in Sectilon 8 of Searle et al. {1981).

Consider the following example.

Table 2: Data
7,9 6 | 2
8 [4,8])] 12

Rormal equations for the full-rank, E-restricted,
interaction model for these data turn out {loc.
cit, ) to be —

- A A P oA
8 o 1 1 1 -1|a 56
o 8 11 1 | -8
11 5 2 1 0 %1 f1o
. | = (13)
1 -1 2 5 o -1|]p, N
11 1 0 5 2||¥,| [
-1 1 0 -1 2 5 312 L
with solution
10 ¢ -1 -1 -3 3{[s6 7
0 1 =3 3 -2 -1|{-8 -10/6
;|1 -3 19 -8 -3 ofj10 1
= - )
7Z|-1 3 -8 13 ¢ 3||L a €
-3 -1 -3 0 19 =8| |18 19/%
3 -2 0o 3 -8 19||% 10/6

From the data in Tsble 2, nsing (8},

2 3
£ R

1=1 g-1 171

R(P;a; 5:'\()
(15)

2(BY+62 +2 +F +2(6R) +122 =448,

Then, using the algorithm (Searle, 1971, p. 170)

&k = L{each solution element
X corresponding element of (16)
r.h. 5. of normal equations),

w= check the value of R{u,0,B,y) from {13) and
(1%) as

R(u,0,B,¥) = 7{56) + (-10/6)(-8) + 1(10)
+ (-1 + (1O/6){18 + &)  (17)
= 148,

which agrees with (15).

To illustrate (10} we first have, from (11)
and (15),

RGN, BV ) = 8 - B (LB Y)Y, (18)

Caleulation of H* (1, é'.,‘?)z for this comes from
deleting o's and the d-equations from (13) %o get

-8 1 1 1-1‘_3- r56-
1 5 2 1 o0 "él 10
12 5 o i B, [=} 4,
11 0 5 2|i¥,| |8
L0 e s ilz_ | 4]
(19)
=
%
with solution |-%],
3
1}
Applying (16) to this gives
B (i, B,y = 7(56) + §(10) + (&
+ 13(18) + 1%{4) {20}

= 428
so that in (18)



RTINS ey

e S e e W, T

§F TR

A
4
3
L
t
£
£
:
ﬁ
"k
&

WM S R B e B

?(&[ﬁ,éﬁ?): =448 - k28 = 20 1)
21
= SAS GIM Type III g/a for A.

This is not the same as R(a)p,p,v). Neither it
should be. R(a] W,B,Y¥) i3 For the wnrestricted
model and is identically zero.

B (&), B, Y )Z is for the E-restricted model.

It iz the type IIT output from SAS GIM. When all
cells are filled, it is alaoc the output of BMDPEY
and, providing et least cme row and column of the
deta have all cells filled, it ir algo the ocutpul
from FAS HARVEY and EPGS ANOVA optlon 2.

Wken all cells ere filled, Eﬁ(&lﬁ,é,{()z ia

the numerator sum of squareg for the F-statistic
that tests Eia, + mij/b all equal. When some
J

cells are empty, the hypcothesis tested 1s messy.
Examples ere given in Searle et al, (1081}.

3. WEIGHTED BQUARES OF MEANS ANALYSIS

The weighted squares of meana analysis 18 an
analysis thet is evallable gnly for dats wherein
all cells are filled. The gum of squares far
rowe in thiz analyeis {Sesrle, 1971, p. 370) ia

a
888, = iilwi{xi. - x[l])z (22)

where

T
]Jwi = Jilfl/nij)/ba! xij = irij_r

- b fb V - a - f a
X, = L X, end x = L W.X. W, .
R R R ]

¥or the example, w, = w, = 18/5, so that
’-‘[1] =5(16/3 + 26/3) = 7 end e0

saa, = (18/5)((18/3-7)% +(26/3-7)°] = 20. (23)
Comparing (23) with (21) suggests that
® (@n, B, )y = s6A_ (24)

which, for all cells filled, is indesd the case,
as proven in Bearle et al. (1961, Appendix B).
Thig. ':].s.wl']y the h_ypotheais corresponding to

B @]id )y 15 Hea, +¥, 21l equal, Thet is
also the hypothesls when using SSAw ag the

pumerator sum of sguares of an P-etatistie.

L4, "INDIRECT" CAICUFRATICN OF SUMS OF SQUARES

SAS HARVEY calculates certain gums of
gquares by what is scmetines called an "indirect”
caleulation procedure or, more deseriptively, the
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"invert-part-of-the-inverse” ixrocedure. It is
attributable to Hendevson {(1659). For a full
renk model E(y) = Xb, in which the solution to

the normal equoations is
t= xn ey, (e5)

the procedure is ag follows. Suppose the model
is partitioned a=s

By} = X0 + X0 - (#6)
Then
B e x| eyl (o, o] |xy
S Bh Bl (R (M Def R,

ba] [EEA o] X2 |Ter Zeef X2

so defining the matrix of Ti'j's as the inverse of
the metrix of XE'{ j's. Then, although the defi-
nition of R(Bll.EE) is

R(b,|b) = R{b,,b,) - R{b,), (28)
e caleulation formula using terms in (27) is

R{b 2,0 = 08, - (29)

Derivation of (29) is shown in Searle (1971,

p- 115) and e new extension of it to medels not
of fu)ll rank is given at equation (38) of Searle
et al, (1961).

. A8 11lustretion of (29} we calculate
o (G!l by B )5.'. from (lll'):

# @i, 5,7y = (10/6)(10/72) H(-10/6) = 20. (30}

5. SUME OF SQUARES FCR THE MEAN

R{p) = B im generally described as the
correctlion for the mean, or ag the sum of aguares
due o the mean. Tt is often interpreted
(wrongly) as being a sum of sgueres for testing

"H:u = 0, whereas 1ts correct ipterpretetion

{see Searle, 1971, peges 104 and 178} is thet of
testing H: E(y) = 0. Moreover, although Nj® ie
the mest wsual value celculated as a sum of
squares for the meen, some compubting procedures
do caleulate other walues; e.g., SAS HARVEY uses

# (14, 8,9)y-
For the data of Table 2,
| R(p) = K2 = B(T?) = 3%.
And applying the "invert-part-of-tha-inverse'
ealouiation of (29) <o (13) snd (1k) gives

B (B, ¥y, = 7(10/72)77 = 352.8.



s e | N IRt

CEe T A g

Y ARENEPTRY

This is also the calculation in BMDE2YV.

The hypotheses tested by using these sums of
gguares &g numerators of F-atatistics are,

for R(u):
1 1
Hrp +5log vop) + 5(38) + 38, +28,)
1
* Byt FY g HY oy ¥Rt = 0
and
for I? (I:LI&) ‘B:? }E:

H:p = 05 i.e.,

Hipy + %(O:IHJEJ + %(ﬁl+a2+ﬂ3)

1
+ E(Y:Ll +'\f12 +v13 +YEl +Y22 +'v23) = 0,

Fach of these hypotheses is less straightforwerd
when there are empty cells in the data.

Of courge, in other models the caleulation
based on full rank reparameterizatlon using
E-restricticns can give further diffarent values.
Thus, for the no-intereetion, I-restricted model,
the normal equations are equations (13} with the
%'s apd Y-equations deleted, nemely

[8 o 1 1'u¢1h _56_

o 8 1 -1f|&| |[-8
- = with sclution
1 l 5 2 ﬂl 10

=
1 -1 2 i
I 5_ _ﬂz_ | ¥
T7 0 =11 -11] |56 T7
3 ¢ 81 -2y 27|]|-8 _ 1] -15
227} . -27 152 -4 | |10] 1 16
=11 27 -64 152 L =16

Hence, on applying (23)

()i p)g = TITT/22(e1) 177

#392 =R =87 .
Thus, although N:?z 1s the seme for every mcdel,

the R*{i]- ). celeulation ven yield different

velnes when using different models on theé aame
dats.
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£. PORUTATION AND RSTTMATTD MARGINAL MRANS

The term "least zquares mean" has been in
the literature for at least twenty years, but it
has never been carefully defined. As it stands,
the expreszion "least squares mean” has no im-
plicit meaning because "least aquarea” is an
egtimation procedure and thoge twe werds do not
function informatively 2e an adjective to "mean",
be it a population mean or & sample average.

SAS GIM cutpul perpetustes thie confusion, using
the term inconaistently for both a function of
parametere and for an estimate. To clarify
matters, Searle et al. (1980) suggest new terme:
populabion marginal mean {PWM), the parameter
function, and estimsted merginel mean (EMM), the
estimate therecf.

Suppose in the 2-way c¢lasgification that
;.Li' 3 is the population mean of the cell defined
by the 1'th row and j'th ¢olumn. Por the

no interaction model: Hyg =H +c¢i+ﬁj - (3D

and for the

With interaction model: py, = b +0y +B, +¥ - (32)

Then the pepulation marginal mean (FMM) corre-
sponding to the 1'th row iz defined as

b
o, ) = J}iluijfb =y - - (33)

Thiz embedies the main idea of the undefinéd
term "least squares mean", that it i= a popu-
lstion merginasl mean; but, in contrast, EMM(G:J._)

ls clearly defined with the following character-
isties,

(i) PMM{ui) is & function of population
parameters;

(11) PM{a,) does not involve the n, j

of the data, and is not in any way

contingent upon empty ¢ells in the

dats;

(1i1) There iz one PMM(Q: } for every row

in the date, and correspondingly cne
PM{B.) for every colwm, and one’

Py 1] ) for every cell.

Having defined a PMM, we can then consider
its estimability:

{a) Because HdM(osi) is a function of

parameters, it ls estimsble when that function
iz egtimeble. Hence a PMM 1is eatimable only
when every “ij in the ™M is estimable; a MM is

not estimable, otherwige,

(b) When a PMM is estimable, its best
linear urbissed eatimator (b,1,we,) iz the same
function of the b.l.we.'s of the pij's a5 the
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MM 1s of the uij‘s themselves, For example, if

b
Pl Y = Eop.,fo iz estimeble
i 4=1 ij
then
EM(cr, ) = Jilaij/h =b.l,u.e. of Pa(e,) (3)

where EMM is the acronym for estimeted marginal
mean and ﬁ:i..]' is the b.l.we. of “.’Lj' Thus

EMM(a, } exists only when aij exists for j = 1,

ve+, b Thig is true in general: san EM, being
the b.l.u.e. of a MMM, exists only when Ky

exists for every p'i.j in the PMM. Hence egti-
mebility of PMM's and existence of EMM'e depends
upon estimgbility of uij'a.

Three ceses must be distinguished in the
2-way crossged classification:
. 1. Without inteéraction model, where every

N : A o, 0 _ .0
Hyy is estimable, with Wiy SR Yoy FBy for

uo, a?' and ﬁ.g being soluiicns to the normal

equations (Searle, 1971, Seection 7.1). For every
row and colunm the corresponding EMM(oti) and

EMI*![(BJ ), respectively, exist.

2, With interaction model, for ell cells

- Lo
filled, where avery oF is eatimable (uij = 'Vij-)
and go every EMM existse.

3. WithAinteraction model, end some cells
empty, where My = iri,j- only for the cells that
contain data. EMM(ai) and EMM(BJ} exiet only for
rows and columns, reapectively, that hawe no

“empty cells.

Exgle. Suppose data are svailable corre-

_ sponding to Grid 3.

grid 3

1l [ 12

il

From (33}
Ble ) = #(uyq + ipp)
and {35)
(o) = Flny, +eg,) -
In the no-interaction model, 1t willl be

found (3earle, loe. cit.) that sclutions to the
normal equations are
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- - o _
O3 = Vip, *¥p1, "33, By =0 '
Hence
Y - Y -
M1 = ¥11.0 K1z = ¥10.2.
~ - ~ - - _
Bgy = ¥py. A Bgy T ¥y, tg), - ¥,
and s0
Bty ) = 2F,,, * Fpp.)
and (3¢)
M(ae} = yel' = i(yll' = yle_} -
In the interaction model
~ - ~ -
13 < ¥, H1p = Y12,
Moy = ¥oq. and Hon deez not exist.
Therefore
EMM(O:J_) = %{yll' + ylE- )
and {37)
EMM(C:E) doss not exist.

SAS GIM gives results {36) and (37). 1In
contrasgt, SAS HARVEY does not Indicate the non- i
existence of EMM(&E) in (37), Instead, it gives ;

the EMM(@E) of (36). Details of this exampls,

and of other examples involving a nested factor,
a mived model, & 3-way clasgification, and co- !
variance are showm in Searls et al. (1580},

7, VARTANCE COMPONENTS ESTIMATTON

Annotated Computer Output for variance com-
ponents (ACO o®) ere now evailable for four
roubinea: SAS VARCOMP, SAS HARVEY, SAS RANDOM,
gnd BMDP-V. Some salient features of cutput
from these routlines are as follows.

1. SAS VARCOMP calculates three different
kinds of estimates.

(a) Henderson Method 3, using the sub-method :
based on the ogrder in whiech factors are i
presented, €.g., using R(Cﬁ]l.l), R(ﬂi“;“) and i
R(y[u,, ). :

(v) MDMUE(Q), being the minimum norm guedratic
unbimsed estimators (MINQUE), using prior
values of zerc for all variance components
except the error component. Although com-
putable for large data sets, there iz evi-
dence thet the resulting estimates have
much larger sampling variances than do
other estimated (Quess and Bolgiano, 1977).
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(c) ML, meximum likelihood, which always yields
non-negative estimates but which sometimes
changes the model in so doing.

2. SAS HARVEY
(a) cannct handle interaction models.

(b) uses Henderson's Method 3, the sub-method
baged on each factor after all otkers, e.g.,

R(ofu,p) end R{B|p,a).

(¢) wuses E-restrictions both for calculating
sums of sguares and, more iImportantly, for
taking expected values of those sums of
squares.

3. BAS RANDCM calculetes, for random and,/or
mizxed models a3 specified by the user, expected
mean squares for all Types I, II, IIT and IV swms
of squares as used in SAS GIM. Although some of
the Type TIT sums of squsres are the seme as in
SAS HARVEY, based as they are on Z-restrictions,
their expectations are not always the same.
Expected values in SAS HARVEY are based on I-re-
gtricted models whereas those of SAS RAKDOM ere
not.

(5AS NESTED is svailable only for models
thet are both completely neated and completely
random. ) '

4. In tke EMDP-V routines

{a) P2V can do caleulations for repeated
measures experiments, which are nothing
more than mixed models.

(b} I3V caleulates REML (restricted meximum
likelihood) and ML estimates and alsoc does
what none of the other routines de: it
estimetes the fixed effects of g mixed
model and it gives estimated sampling
varisnces and covariances of estimated com-
ponernta,

(c) PBY caleulates ANCVA (analysis of variance}
egstimates for halanced data, using F-re-
stricted modeis. REML estimates from P3V
{for balanced data) equal ANOVA estimates
using unrestricted models, and s¢ they are
not the same as the ANCVA estimates from:
E8v.
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