Systems Programming Applications In C Using the SAS/C® Compiler
Ingrid Ammondson, SAS Institute Inc., Cary, NC

ABSTRACT

Traditionally, systems programming for the IBM® 370 has been
performed using assembler. This is becausa systems appkca-
tions require a Janguage that provides efficiency, control over the
environment, and access to system data and services. On UNIX®
type cperating systems, the C language is the systems program-
ming language because C has features that make it suited to sys-
tems programming applications. With the devsiopment of C
compiters for the 370 enwvironmant, it ia dasirable to write 370 sys~
tems programs in C in order to gain the programming and mainte-
nance benefits inherent in a high-lavel language. This paper
addresses using C for 370 systemns programming applications,
the problerns involved, and some possible solutions to those
problems.

INTRODUCTION

The C language is a relatively new programming language, with
the fastest-growing user base of any ianguage. it was developed
in 1972 at Bell Laboratories by Dennis Ritchie and has bean tradi-
tionally used for systems programming applications in the UNIX
. environment. The language is block-structured, fadilitating the
deveiopment of weli-formed, structured programs. C comains
many useful data types and a wide set of operators, which, along
with its rich Bbrary, make it extrernely powerlul - Because C code
is compact and supports basic hardware data types and opera-
tions, it is an efficient language compared to other high-level lan-
guages such as PL/l. Cis standard in most university computer
science curricuia, and there are many C programmers avaifable.
A growing body of software is written in C, mach of it portable.
Good C compilers exist on most machine architectures. The draft
ANSI X311 C Standard is ¢lose to becoming final, providing a
standard definition for C.

in the past three years, with the availability of good C compilers
for the IBM system 370, the use of C on the 370 has increased
significantly. Today, there are a large number of sophisticated
applications written in C available for the 370 environment, includ-
ing system tools and utilities, performance systems, expert sys-
tems, and enginearing, financial, and information retrieval
systemns.

One of the newsst uses far C on the 370 Is for writing systems
programming applications. Writing systems appications in C is
desirabla in order to gain the programming and mainienance bhen-
“efits inherent in a high-level language. This paper describes the
nature of 370 systems programming applications and the lan-
guage requirements for such applications. The suitability of C for
these projects is axamined, and guidelines for using C are dis-
cussed. The support for systems applications provided by the
SAS/C® compiler also is described, and exampie applications
presented,

6562

CHARACTERISTICS OF SYSTEMS APPLICATIONS
Categories of Syatems Applications

Traditionally, systems programming for the {8M 370 has been
performed using assembler. Because there is little Herature or
training available on writing systems applications, it is useful to
attempt to characlerize these applications. The following catego-
ries of systems applications can be considered:

+ exits from operating system components, such as VTAM
or JES2, or from other software, such as RACF or ISPF

+ extensions to the operating system, such as user
supervisor calls {SVCsj or new CMS commands .

= low-level applications, such as shared file servers or
performanca measurement tools, which require direct
aceass to the features of the hardware and operating
system

+ programs that must executs partially or entirely
asynchronously, such as real-timea or event-driven
applications.

Popularity of Software Exits

User-written exits from ail fypas of software are becoming popu-
lar, partly due fo the frend towards Object Code Qaly {0CO) soft-
ware distribution. Most users accept OCO distribution as long as
uger modifications to the software are stli possible. Software
exits can be an elegant solution for providing system flexibility
and aflowing user customization. Many vendors are incorporating
exits into their products.

Ancther reason for the increasing popularity of exits is that this
allows software vendors 10 write packages that are portable, with
system-gpecific capabitifies provided through exits. Exits ¢an be
found in virtuaily all types of software, including production con-
trol systems, automated computer center managers, perfor-
mance monitors, software management packages, and operating
systems and utilities.

Diversity of Systems Applications

Similar types of appiications may have diversa characteristics in
such areas as complexity, frequency of invocation, and environ-
mentai constraints. To illustrate this diversity, consider the follow-
ing types of exits:

» an exit that can be invoked at any point, including at
systam indtialization time, and that cannot depend upon
the full availabiiity of operating system services, such as a
DASD management exil

» a JES2 exit for scanning a job card that is executed once
per job and contains only 30 assembiler statements

» a RACF exit that is executed each time any data set is
opened and whose performance is therefore critical,

Constraints upon Systems Applications

Despite their diversity, systems applications must usuatly exe-
cute within constraints not impased upon other types of appfica-
tions, due to their close association with the hardware and
operating system.

Efficiency

Systems applications, parlicularly extansions to the operating
system, must be efficient and compact. Often these routines con-
sist of short code sequences that are stored in shared mamory
and executed many times, such as a CMS end-of-command
nucleus extension or a RACF exit to provide fast path access to
data sets. Some exits, such as SMF exits, involve a large amouni
ot processing and recording of data,

Environments

Exits may be required to execute in tha environment of the prog-
uct that invoked them, such as JES2 or CICS. Thiz can place
restrictions and requirements upon the oxits in such areas as
finkage conventions, usage of service routines, and communica-
tion protocols.

Linkage Conventions

Applications that must conform to the environmernt of the celling
preduct may be called with a wide variety of nonstandard and
inconvenient inkage conventions. Such applications may include
JES2Z or CICS exits, CMS nucleus extensions, interrupt handlers
{such as STIMER exits}, or extensions to the operating system
{such as MVYS S¥Cs).

Control Block Access

System control blocks provide a means for systems applicalions
t6- communicate with hardware, components ot the operating
system, and other applications. These control blocks are fre-
quently definad through assembler DSECTs in lbrares provided
as part of a product. The infermation contained in control biocks
is normally bit flags, counters, other status-type information, and
the addresses of other control blocks. Control blocks are often
linked together in queue or tree structures, Efficient conatruction
and navigation of these structures and the manipulation of the
data within are requirements for many systems applications.

Parameler Blocks and Refurn Codes

In addition to system confrol blocks, information is passed by
systams applications via parameter blocks and retum codes.
Thers are often stringent and environment-specific rules for this
means of passing information.

System Macros and Service Routines

Virtuaily ail systems applications perform standard actions. such
as eniry 1o and exit from the application, and request system ser-
vices, such as memory allocation. Macros and SYCs are used to
parform these actions, Tha macros may be supplied as part of
an operating system or software package, or they may be part
of a user-written service library. Exits that run in some environ-
ments may be required to use only the macros and services pro-
vided by that environment, such as a CICS task-related user exit
that must issue CICS GETMAINS rather than OS5 GETMAINS.

653

Execulion Modes

A systems appiication may execute as a normal problem-
program or may be required to execute in a privileged environ-
ment. There may be dependencigs on addressing mode, privilege
fevsl (such as protect key), and other execution attributes (such
as running in.a disabled state). Because they may execute in a
privileged mode and can therefore damage the oparating system
if thay fail, sysiems applications must be coded with greater cau-
fion than other applications,

Because no high-level language has been available that can uni-
formly mest the requirements of applications with the above char-
acteristics, documentation for various product exits and systems
software often states that assembler must be used. To illustrate
that C is a viable language for such applications, it is useful to
examine the requirements for a 370 systems pragramming ian-
guage.

REQUIREMENTS FOR A SYSTEMS APPLICATIONS
LANGUAGE

A high-level language implementation is composed of both a lan-
guage translator and a library of run-time support routines, The
nalure of systems applications places a unique set of constraints
and requirements on the language and its library.

Language Requirements

The language requirements for a 370 systems applications ian-
guage and their relationship to C are examined in the following
paragraphs. -

Address Access and Operations

Perhaps the most important language requirement for a systems
application language is simple and fast access by address to con-
trd biocks, data, and code snd the ability 10 perform operations
on such addrassas. C provides the pointer data type, the address
operator, and pointer anithmetic. The implementation is straight-
torward, easy to understand, and closely related to actual hard-
ware operatigns.

Locating and manipuiating other bodies of code are systems
application requirements. C function pointers are extremely pow-
erfut for this purpose, enabling the location of a function to be
manipulated as a variable while the actual address of the function
need not be known. For example, an array of function pointers
can be declared and initiafized and passed to other load modules
to enable the functions fo be called by and shared between sev-
eral programs.

Bittield Definition and Manipulation

Systems applications frequently require definition and manipula-
tion of bitfields, for example when interfacing to hardware such
as /0 devices. The G language provides oparators to access and
manipulate bits contained within a word. Additionally, partial
waords may be treated as bits through the C bitfield data type.

Table Searches and Parameter Parsing

Funciions such as table searches and parameter parsing are fre-
qusanlly required in systems appiications. C provides variable-

tength string-handiing support and includes library functions that
are useful fools for building routines 1o parform such cperations
as command parsing and message buitding.

Macro Language

There are many programming functions that are routinely per-
formed in systems applications. A macro language is a powerful
toof tor creating reusable code and avoiding the overhead of a
subroutine cali, For exarnple, certain code sequencges, such as
those required to issue an ENQ or a GETMAIN, are oflen
repeated with minor variations, A macro language can alflow the
basic pattem of these code sequences {0 be defined and saved
in seme manner and then expanded and executed.

G contains a magro preprocessos that supports symbolic name
replacement, definition of commonly used code sequences, inclu-
sion of text from separate files, and conditional compilation. Con-
ditional compilation allows code sequences to be varied at
compile time, depending upon a condition known &t compile time,
such as tha operating system under which the code wifi execute.

Nonpatemalistic Language Characteristics

A general language characteristic that is a requirement for a sys-
tems application language is that the language be nonpaternalis-
tic — that is, that the language nct interfere with or prevent
potentially unsafe coding practices. For instance, while using
zero as a pointer value is ordinarily a mistake, a CMS systems
application may need to reference the conterds of low memory
in this way. C allows such operations.

A unique feature of C is the approximate equivalence of pcinters
and arrays. For example, a pointer variable can be subscripted
to access items after the first one puointed to. Since arrays of
unknown size are not supporied, this enables pointers to be used
as indexes in situations where a variable number of iterns might
occur, such as in processing entrias in the MVS TIOT control
block.

in general, C conforms 1o the gun-builet-foot styls of program-
ming - it's your gun, your builet, and your foot. (Of course, whan
programming a systams application, it pays to be careful with
such constructs. A singie bullet, carelessly fired, can shoot the
foot of everyone using the systam.j

C Language Extensions

in addition to the standard fanguage features as defined by the
ANS! X3J11 C Standard, thare are a number of features 8 com-
piler vandor can provide to enhance the utility of C for systems
applications.

Much sysiems software is required to be reentrant, since it may
be installed in shared memoary and is normally exacuted by many
users. While reentrancy is not an actual part of the C language
definition, the SAS/C compiier provides a compilation option to
genarate compietely reentrant code with no fimitaticns on pro-
grammar coding style, Fhis includes no fimitations upon the ini-
tiatization and modification of static and extern data.

The ability to map system control blocks using C structures is
very important and sometimes requires the elimination of padding
in C structures. The SAS/C compiler pravides the BYtealign com-
piler option 1o align date elements within structures on byte
boundaries, The alignment of individusl structures can be con-
trolled through the __alignmem and _noalignmem keywords.
Additionally, an implementation of tightly packed partial-word bit-
fields g helpful for control block mapping. The SAS/C compiler

654

provides a compiter option to treat biffields as char rather than
int to assure maximum packing.

The generatéd code for a systems application must be efficient
and compact. G is inherentiy a compact language. Additionally,
each new release of the SAS/C compiler resuits in faster gener-
ated code. Release 4.00includes a global optimizer phase to opii-
mize the flow of control and data.

One important systems programming need that extends beyond
standard C is the abibity to control register allocation within the
generated coda. For example, it may be desirable to choose a
particular regisier as a base register or to specify that a specilic
register not be used in the generated code. To mest all require-
ments for systems programming fully, a C compiler would need
to generale assembler code as outpul, thereby providing control
over registers, the agbility to issue system macros, and the ability
to conform to any unusual enviranmental requirements,

A degree cf controi can be achieved by providing the abiity to
write inline machine code from within C source. The SAS/C com-
piter praovides this feature. This aliows operating system SVCs
and 370 assembler instructions to be issued directly from C,
avoiding the overhead of function calls, Additionatly, G macros
can be defined to issue the sequence of machine instructions
necessary to duplicate many assembler macros.

Library issues

One of the advantages of using a high-level ianguage is the pres-
ence of a fibrary of support routines. The following paragraphs
discuss requirements and desirable features for a library used
for systems programming apptcations and the probiems involved
with using a standard C library for these applications.

Library Requirements

A library used for systems applications must be fast, compact,

and nonintrusive. The functions provided should include support
for basic programming functions, such as #/Q. string-handling,
and memodry management. Support for specialized systams
applications and requirements, such as interrupt handling, is
dasirable faature. Library front ends should be available to make
it easy o issue common SVCs and system cails.

Source code should ke provided for those roulinas that interact
directly with the operating system to allow tailoring to meet spe-
cial requirements. The ability {0 use services other than the stan-
dard ones provided by the cperating system, such as a CICS
GETMAIN rather than an MVS GETMAIN, shauld be provided,
Library functicins should not require dynamic loading, as this
function may not be availabla in aii environments. Additionally,
fibrary functions not called should not ba included in the ioad
module in order to minimize load medule size. it is important to
be able to axecute C code with minimal jibrary support for appli-
cations where C can be used as a high-level code generator.

The environment required hy the library must be smatll, fiexible,
and modifiable, and so source code should be available for the
environment support routines. For example, C supports auto-
matic variablas and recursive function calls and therefore
requires a program stack of some sort. But no single method of
stack alipcation and management mests the requirements of alt
systems applications on an architecture with no hardware stack,
such as the 370. Therefore, it is important that the source for pro-
iogue and epilogus routines, which manage the stack, be avail-
able and that the suppori provided by the compiter vendor be
flexible enough to accommodats different implementations,

Tha library shoutd not imposa arbitrary restrictions upon the pro-
grammer, as systems applications can require opsrations whose
meaning or utility are questionable in a traditional application,
such as treafing the code of a subroutine as data. Not alt error-
checking is inappropriate, but the library should avoid rejection
of any construct that might ba {or bacome} meaningful. For
instance, itis reasonable to require that a GETMAIN macro spac-
ify a non-negalive amount of storage. But it is not reasonabls to
restrict the subpool number to a fixed set, particularly since new
operating system releases could introduce new valid subpaoals,

Library Problams

The use of a standard high-level ianguage iibrary can cause prob-
lems for systems applications. For example, cansider an applica-
tion that requires repeated aliocations of memory. it is certainly
preferable to calf a library routine that aiready implements a stor-
age management algorithm rather than to issue repeated ealls
to DMSFREE or GETMAIN, which can fragment available storage
and cost sigaificant overhead. While calfing a library routine is
dasirabie, a degree of control is required over the fibrary for sys-
tems applications. For example, while the above application may
require that storage be allocated from a particular subpool, most
standard fbrary storage functions do not provide subpool selec-
tion as an option. Or perhaps tha slorage management algorithm
used by the Bbrary does not suit the needs of the application. A
normai high-level language library is often too inflexible for use
in systams programming applications.

For C, the library probiem is compounded by the close coupling
of the ANS! definition of the fibrary to the UNIX operafing system.
Many concepts from UNIX have no efficient counterpart, or even
meaning, under the standard 370 operating systems. For exam-
ple, C /O functions assume that files are divided into records by
newling characters encoded in the file. This assumption is techni-
cally incorrect for 370 file formats. A single record of a 370 object
deck may contain any number of newline characters as data. It
is not possitile to create an efficient library implementation, such
as is required for systems applications, that conlorms to both
architsctures.

Furthermore, the ANS! library definition was created for general
applications programming and includss requirements that add
undesirable overhead for systems applications. For instance,
ANSI requires that three standard files {stdin, stdout, and
stdert) be opened by the library rather than by the application.
For a systems application, this adds expensive and frequentiy
neediess overhead. -

SAS[C Compiler Systems Programming Environment

The SAS/C compiler's Systems Programming Environment (SPE)
is an implementation of the C fibrary and execution framework
that is designed for writing 370 systems applications. The follow-
ing paragraphs provide an overview of this library and the envi-
ranmsant it provides.

Tha SPE fibrary provides support for normat pregramming func-
tians, such as string-handiing and /0, and for specialized ays-
tems programming functions, such as interrupt handiing and
dynamic foading. The functions inctuded in the library can be cat-
egorized into three classes. In the first class are those tunctions
that are present in the full ANSI C fibrary definition and that do
not interact with the operaling system in any way. These include
the string-handiing and mathematica! functions. in the second
clasa are thase functions that are presentin the full ANSI C library
and do have operating system dependencies, such as malloc
of exit., SPE versions of these functions are provided.
in the third class are functions or macros that provide support
for specialized systems programming functions, such as inter-

655

rupt handling, or that invoke commonly used SVCs or oparating
system services, such as GETMAIN.

The following functions are available in the SPE lbrary:

1. memory management, including mallec, free, and
support for DMSFREE and GETMAIN

2. terminal if0, including 05 TPUT/TGET and CMS
RDTERM/WRTERM

3. CMS File System and 05 BSAM /O
4. dynamic loading

5. program controt

6. interrupt handling

7. diagnostic control.

Source code is provided for the functions that interface with the
operating systam to allow modification for specialized needs.
Oniy functions that are required are linked into the load module
to ensure minimat ipad module size.

The SPE version of the C environment {calied an execution
framework in SPE}is compact and flexibie. The execution frame-
work is created during program start-up or on entry to the first
C routine. The start-up routine acquires storage for program vari-
ables, manages the stack, allows for oplional error-handling, and
provides for destruclion of the framework and release of its
resources on termination of the application. Source is provided
for the start-up, exit and stack management routines. The execu-
tion framework can ba managed by two basic methods.

1. The T framewaork can be created on entry to tha main C
routine and destroyed on exit. This method is heavily
oriented towards traditional assembler programming
concepts and best used for 2 main C routine with a
number of subroutines.

2. Ahemnatively, using the iNDependent compiler option, the
C framework can he created on ontry to the first C
routine, preserved across function calls, and destroyed
when no fonger required. This method is best suited for
a package of C service routines where no main routine
will be executed.

Standard start-up roulines are provided for generic cases. Since
the source code is provided, the start-up and exit routines can
be modified and combinad with one of the two mathods to con-
form to special environments and linkage conventions. For exam-
ple, consider the following constraints that may exist for a
program that runs as a CMS nucleus extension:

» The values in RO, R1, and A2 on entry 10 the nucleus
extension must be passed to the C entry point,

+ The nucleus extension may have special attzibutes, such
as ENDCMD, which indicates the nucleus extension
receives conirot at end-of-command processing.

+ The C framework shouid only be created the first time the
nucleus extension is created and destroyed only when the
nucleus extension is dropped.

Through a combination of the iNDependent compiler option and
the provision for a user-written start-up routine, SPE enables C
programs 0 run as efficient nucieus extensions. An example of

this use and one of an MYS SVC start-up routine are provided
in the SPE documentation.

SPE provides sourcs for the prologue and epifogue routines, This
allows flexibility in stack management and permits the trade-oif
bstween support for debugging and good performance to be
managed on an application-specitic basis. For instance, an apphi-
cation may require tha: all registers be saved on function entry
to facilitate dump reading or that only @ minimum number be
saved to improve performance, Additionally, SPE inciudes source
for the math error-handling and for the library warning routines,
providing a degree of control over the error-handling desired for
a specific application.

Support

There are saveral additional pieces of support that can aid in
using C for systems applications. One of the mostimportanttools
provided by the SAS/C compiler is the DSECT2C utifity that con-
verts assembler DSECTs to accurate, usable C structure map-
pings. The SAS/C compiler accepts the nonstandard extensions
to C that are required by these C structure mappings. These
include anonymous urdéons, such as those generated by overlap-
ping fields, and noninteger bitfieids.

Good documentation containing useful, real-world exampies is
very important and is a standard for all SAS/C features, including
SPE. The 8AS/C Usage Notes tape, available to any user of the
SAS/C compiler, will include an exampile lbrary of actual systems
applications contributed by usars. Vendor-provided support and
maintenance are important, as the refiability of systems applica-
tions is often critical. The SAS/C compiler Is known for its fre-
quancy of releases, its avaiability of fixes for all known bugs, and
its knowledgeabls, timely, and tree technical support.

A source-level debugger can be a valuable tool for initial debug-
ging of some applications and graatly anhances programmer pro-
ductivity over a machine-level debugger. The SAS/C compiler
includes a source-evel debugger thai, while it does not execute
with the SPE library, can be used with the regular kbrary during
initial debugging. For instance, the debugger inciudes the
MONITCR command to allow data objects and storage to be
monitored for arbitrary changes in value. Additionatiy, the SPE
fibrary provides an optional past-mortem traceback facility via the
btraca function.

BENEFITS OF USING C FOR SYSTEMS
APPLICATIONS

#t is clear that C is well-suited to many systems appiications.
White the ANSi-defined C library is not well-suited for these appli-
cations, itis certainly possible to create a C library that does sup-
port systems programming applications well. The SAS/C
compiler meets this requirement with ita SPE library.

in addition to the suitability of C for systems applications, there
are severat other good reasons for choosing C. Programmer pro-
ductivity studies have shown that high-level languages require
{ess lines of code and less coding time than assembler, while the
ratio of bugs to lines of code rermains approximately the same.
Thus, in the hands of an expatienced software engineer, itis clear
that coding in C when possible is more productive. C is generally
gasier to maintain than assembiler code. Experienced C program-
mers are plentiful compared tc skilled assembler programmers,
and C programming skills are considerably more portable across
projects and hardwara than assembler skilis. In general, assem-
bler pragrammars learn C easily. And finally, there are some sys-
tems applications for which C is clearly superior to assembier.

DECEDING ‘WHEN TO USE C FOR SYSTEMS
APPLICATiONS

The follnwmg points should be considered in any dacision fo use
C or assembler for systems applications. G is well-suited for
applications that involve parameter parsing, table searches,
linked iist pracessing, message text handfing, and structured or
complex decision-making. Routines of this sort written in C are
also easisr to debug and maintain.

Additionally, C should ba considerad for applications where the
overhwead of the C enwironment is not significant compared to the
overall path fength of the code. Code size is a lesser consider-
atton, because in many cases C coda, especially if it has been
optimized, compares favorably with assembler in size and speed,

Applications thal involve a very short instruction sequencs or that
are in extremely high-volume, critical pathe are probably best
written in tightly hand-optimized assembler. Additionally, exits
that must run in a particuiar environment, such as-JES2 or CICS,
while possible to write in C, require a fairly sizable initial program-
ming investment to create, support, and adhere to the anviron-
ment from C.

EXAMPLES

In the paragraphs below, the broad range of systems software
that has been written in C for the 370 is presented. Example appli-
cations are then discussed.

As previously mentioned, there is an increasingly large body of
370 systemns software written in C. Some examples that are writ-
ten using the SAS/C compiler include

+ information retrieval systems

« database management systerms

» performance monitors

+ natural language transiators

+ engineering applications design touls

* source code librarians and program construction utilities.
A good example of the versatility of G i in the development of

Version 6 of the SAS® System. C is used in the BAS System to
perform the following functions:)

« user interface and applications
» {uli-screen user-interface

» interprocess communication

« task management

+ memory management

* lpad module manégement

s 4O -

» coda generation.

Systemns appiications that are being planned at SAS Institute
using the SPE library inciude

+ a utility to install load modules into discontiguous shared
segments under VM /XA™

= a replacement for an assembiler TSO TRANSMIT exit that
notifies users on different NJE nodes that they hava mail

« an SVC 99 exit that vaiidates the blocking factor for new
data sets

« a TSOJE EXEC exit that changes the system search order
for TSO commands.

CONCLUSIONS

The availability of C pregrammers and the support provided by
the SAS/C compiler’s SPE make it feasible and desirable to use
G tor 370 systems programming applications. Along with the pro-
ductivity and maintenance benefits inherant in a high-tevel lan-
guage, C is well-suiled to many types of systems applications,
Data and function peintars provide access to system data and
routines. Generated code is small and fast. Structures can easily
be used to describe syatem control biocks, Bit and pointer opera-
tors are provided.

At rninirnum‘ the ability to code machine instructions inline is
naaded for issuing SVCs and unusual assembler instruction
sequences. ideally, C compiler shouid provide an option to gen-
erate assembler code in order to controt register allocation and
call existing assembler macros. - .

A C library for systems programming needs to be small, nonintru-
aive, and well-integrated with the operating system. Source code
should be provided for routines that imtarface with the operating
system or the C environment.

The instaifation using C for systems applications should evaluate
each appfication in tarms of surtab;hty to C. The decision should
consider such factors as:

« eftect of library overhead on overall code size and speed

857

= nature of the programming lasks to be accompiished
« special environmental constraints

= critical nature of the application

+ available programmer resources

» long-term maintenance congiderations.

With wise application evaluation, © ¢an provide considerable pro-
gramming resource savings whils costing little or nothing in soft-
ware performance for many 370 systems.programming -
applications. The SAS/C compiler's SPE provides a fibrary and
C environment that facilitate the development of such applica-
tions.

SAS and SAS/C are registered irademarks of SAS Institute Inc.,
Gaty, NG, USA.

iBM is a registered trademark and VIV/XA is a trademark of Inter-
nationai Business Machines Corporatian.,

UNIX is & .ragéstered fradamark of AT&T.

