
Systems Programming Applications In C Using the SAS/e" Compiler
Ingrid Ammondson. SAS Institute Inc., Cary. NC

ABSTRACT

Traditionally. systems programming for the IBM® 370 has been
performed using assembler. This is because systems applica­
tions require a language that provides efficiency, control over the
environment, and access to. system data. and sefVices. On UNIX*
type operating systems. the C language is the systems program~
ming language because C has features that make it suited to sys­
tems programming applications. With the development of C
compijers for the 370 environtruJnt. it is desirabie to write 370 sys­
tems programs in C in orderto gain the programming and mainte­
nance benefits inherent in a high-level language. This paper
addresses using C for 310 systems programming applications,
the problems involved. and some possible solutions to those
problems. .

INTRODUCTION

The C language is a relatively new programming language, with
the fastest-growing user base of any language, It was developed
in 1972 at 8ell Laboratories by Dennis Ritchie and has been tradi­
tionally used for systems programming applications in the UNIX
environment The language is block~struotured, facilitating the
development of well-formed. structured programs, C contains
many useful data types and a wide set of operators. which. along
with its rich library. make 1t extremely powerful. Because C code
is compact and supports basic hardWare data types and opera­
tions. it is an efficient language compared to other high-level Ian­
guages such as Pl/1. C is standard in most university computer
sCience curricuta. and there are many C programmers available,
A growing body of software is wrItten in C, much of it portable,
Good C compilers exist on most machine architectures. The draft
ANSI X3J11 C Standard is close to becoming final, providing a
standard definition for C.

In the past three years, with the availability of good C compilers
for the IBM system 370, the use of C on the 370 has increased
significantly. Today, there are a large number of sophisticated
applications written in C available for the 370 environment, includ~
log system tools and utilities, performance systems. expert sys­
tems, and engineering, finanCial, and information retrieval
systems.

One of the newest uses for C on the 370 is for writing systems
programming applications. Writing s~tems applications in C is
desirable in order to gain the programming and maintenance ben­
efits inherent in a high-level language. Thts paper describes the
nature of 370 systems programming applications and the lan­
guage requirements for such apptications. The suitability of C for
these projects is examined, and guidelines for using C are dis~
cussed. The support for systems applications pro\lided by the
SAS/C® compiler also is described. and example applications
presented.

652

CHARACTERISTICS OF SYSTEMS APPLICATIONS

Categories of Systems Applic.tion$

Traditionally, systems programming for the IBM 370 has been
performed using assembler." Because there is little literature or
training available on writing systems applications, it is useful to
attempt to characterize these applications. The following catego­
ries of systems applications can be considered:

• exits from operating system components, such as VT AM
or JES2, or from other software, such as RACF or ISPF

• extensions to the operating system. such as user
supervisor calls (SVes) or new eMS commands '

• low~level applications, such as shared file servers or
performance measurement toots, which require direct
access to the. features of the hardware and operating
system

• programs that must execute partially or entirely
asynchronously, such as real-time or event-driven
applications.

Popularity of Software Exits

User-written exits from all types of software are becoming popu­
lar, partly due to the trend towards Object Code Only lOCO) soft­
ware'distributiOn. Most users accept DCO distribution as long as
user modifications to the software are still possible, Software
exits can be an elegant solution for providing system flexibility
and allowing user customization. Many vendors are incorporating
exits into their prOduct's.

Another reason for the increasIng popularity of exits is that this
allows software vendors to write packages that are portable, with
system-specific capabilities provided through exits. Exits can be
found in virtuaUy all types of software, induding production con­
trol systems, automated computer center managers, perfor­
mance monitors, software management packages, and operating
systems and utilities,

Diversity of Systems Applications

Similar types of applications may have diverse characteristics in
such areas as com~exfty, frequency of invocation, and environ­
mental constraints. To illustrate this diversity, consider the follow­
ing types of exits:

.. an exit that can be invoked at any point, induding at
system initialization time, and that cannot depend upon
the full availability of operating system services. such as a
DASD management exit

.. a JES2 exit for scanning a job card that is executed once
per job and contains only 30 assembler statements

• a RACF exit that is executed each time any data set is
opened and whose performance is therefore critical.

Constraints upon Systems Applications

Despite their diversity, systems applications must usuaRy exe­
cute within constraints not imposed upon other types of applica­
tions. due to their close association with the hardware and
operating system.

Efficiency

Systems applications, particulaJ1y extensions to the operating
system, must be efficient and compact Often these routines con­
sist of short code sequences that are stored in shared memory
and executed many times. such as a eMS end..af..command
nucleus extension or a RACF exit to provide fast path access to
data sets. Some exits. such as SMF exits, involve a large amount
of processing and recording of data.

Environments

Exits may be required to execute In the environment of the prod­
uct that invoked them, such as JES2 or CICS. This can place
restrictions and requirements upon the exits in such areas as
linkage conventions, usage of 'service routines, and communica­
tion protocols.

Linkage Conventions

Applications that must conform to the environment of the calling
product may be called with a wide variety of nonstandard and
inconvenient linkage conventions. Such applications may include
JES2 or CICS exlts, eMS nucleus extensions, interrupt handlers
(such as STIMER exits). or extensions to the operating system
(such •• MVS SVC.).

COntrol Block Access

System control btocks provide a means for systems applications
to· communicate with hardware, components of the operating
system, and other applications. These control blocks are fre­
quently defined through assembler OSECTs in libraries provided
as part of a product. The information contained In control blocks
is normally bit flags, counters, other status-type information, and
the addresses of omer control blocks. Control blocks are often
linked together in queue or tree structures. Efficient construction
and navigation of these- structures and the manipulation of the
data within are requirements for many systems applications.

Parameter Blocks ~md Return Codes

In addition to system control blocks, information is passed by
systems applications via parameter blocks and return codes.
There are often stringent and environment-specific rules for this
means of pasSing information ..

System Macros and Service Routines

Virtually all systems applications perform standard actions. such
as entry to and exit from the application, and request system ser­
vices, such as memory allocation. Macros and SVCS are u~d to
perform ttlese actions. The macros may be supplied as part of
an operating system or software package. or they may be part
of a user-written service library. Exits that run in some environ­
ments may be required to use only the macros and services pro­
vided by that environment. such as a CICS task-related user exit
that must issue CICS GETMAINs r.ther than OS GETMAIN •.

653

Execution Modes

A systems application may execute as a normal proble-m­
program or may be required to execute in a privileged environ­
ment. There may be dependencies on addressing mode, priVilege
level (such as protect key), and other execution attributes (such
as running in a disabled state). Because they may execute in a
privileged mode and can therefore damage the operating system
if they fail, systems applications must be coded with greater cau~
lion than other applications,

Because no high-level language has been available that can uni­
formly meet the requirements of applications with the above char"
acteristics, documentation for various product exits and systems
sofuvare often states that assembler must be used. To illustrate
that C is a viable language for such applications, it is useful to
examine the requirements for a 37() systems programming lan­
guage.

REQUIREMENTS FOR A SYSTEMS APPLICATIONS
LANGUAGE

A high-level language implementation is composed of both a lan~
guage translator and a library of run-time support routines. The
nature of systems applications places a unique set of constraints
and requirements on the language and its library.

Language Requirements

The language reqUirements for a 370 systems applications lan­
guage and their relationship to C are examined in the following
paragraphs.

Address Access and Operations

Perhaps the most important language requirement for a systems
application language is simpJe and fast access by address to con­
trol blocks, data. and code and the ability to perform operations
on such addresses. C provides the pointer data type, the address
operator, and pointer arithmetic. The implementation is straight­
forward, easy to understand, and closely related to actual hard­
ware operations.

Locating and manipulating other bodies of code are systems
application requirements. C function pointers are extremely pow~
erful for this purpose, enabling the location of a function to be
manipulated as a variable while the actual address of the function
need not be known. For example, an array of function pOinters
can be declared and initialized and passed to other load modules
to enable the functions to be called by and shared between sev~
eral programs.

Bitfleld Definition and Manipulation

Systems applications frequently require definition and manipula­
tion of bitfiekis, for example when interfacing to hardware such
as I/O devices. The C language provides operators to access and
manipulate bits contained within a word. Additionally, partial
words may be treated as bits through the C bitfield data type.

Table Searches and Parameter Parsing

Functions such as table searches and parameter parsing are fre­
quently requlred in systems appHcations. C provides variable-

length string~handling support and includes library functions that
are useful tools for building routines to perform such operations
as command parsing and message building.

Macro language

There are many programming functions that are routinely per­
formed in systems applications. A macro language is a powerful
tool for creating reusable code and avoiding the ollerhead 01 a
subroutine calL For example. certain code sequences, such as
those required to issue an ENQ or a GETMAIN, are often
repeated with minor variations. A macro language can anow the
basic pattern of these code sequences to be defined and saved
in some manner and then expanded and executed.

C contains a macro preprocessor that supports symbolic name
replacement. definition of commonly used corle sequences, inclu~
siDn of text from separate files. and conditional compilation. Con­
ditional compilation allows code sequences to be varied at
compile time, depending upon a condition known at compite time,
such as the operating system under which the code will execute.

Nonpaternalistic Language Characteristics

A general language characteristic that is a requirement for a sys-­
tems application language is that the language be nonpatemalis­
tic - that is, that the language not interfere with or prevent
potentially unsafe coding practices. For instance, while using
zero as a pointer value is ordinarily a mistake, a CMS systems
application may need to reference the contents 01 low memory
in this way. C allows such operations.

A unique feature of C is the approximate equivalence of pointers
and arrays. For example. a pointer variable can be subscripted
to access items after the first one pointed to. Since arrays of
unknown size are not supported, this enables pointers to be used
as indexes in situations where a variable number of items might
occur, such as in processing entries in the MVS TIOT control
block.

In general, C conforms to the gun-bullet-foot style of program­
ming - it's your gun. your bullet, and your foot. (Of course, when
programming a systems application, it pays to be careful with
such constructs. A single bullet. carelessly fired, can shoot the
foot of everyone using the system.)

C Language Extensions

In addition to the standard language features as defined by the
ANSI X3J11 C Standard, there are a number of features a com~
piler vendor can provide to enhance the utility of C for systems
applications.

Much systems software is required to be reentrant, since it may
be installed in shared memory and is normally executed by many
users. While reentrancy is not an actual part of the C language
definition. the SAS/C compiler provides a compilation option to
generate completely reentrant code with no limitations on pro­
grammer coding style. This includes no limitations upon the ini­
tiatization and modification of static and extern data.

The ability to map system control blocks using C structures is
very important and sometimes requires the elimina1ion of padding
in C structures. The SASIC compiler provideS the BYtealign com­
piler option to align data elements within structures on byte
boundaries. The alignment of individual structures can be con~
trolled through the _a Ii gnmem and --1loalignmem keywords.
Additionally, an implementation of tightly packed partial~word bit·
fields is helpful for control block mapping. The SAS/C compiler

654

provides a compiler option to treat bitfields as char rather than
int to assure maximum packing.

The generated code tor a systems application must be efficient
and compact. C is inherently a compact language. Additionally,
each new release of the SAS/e compAer results in faster gener­
ated code. Release 4.00 includes a global optimizer phase to opti­
mize the flow of control and data.

One important systems programming nood that extends beyond
standard C is the ability to control r-agister allocation within the
generated code. For example, it may be desirable to choose a
particular register as a base register or to specify that a specific
register not be used in the generated code. To meet all require­
ments for systems programming fully, a C compiler would need
to generate assembler code as output, thereby providing control
over registers. the ability to issue system macros, and the ability
to conform to any unusual environmental requirements.

A degree of control can be achieved by providing the abiiity to
write inUne machine code from within C source. The SAS/e com~
pUer provides this feature. This allows operating system SVCs
and 370 assembler instructions to be issued directly 1rom C,
avolding the overhead of function calls. Additionally, C macros
can be defined to tssue the sequence of machine instructions
necessary to duplicate many assembler macros.

Library Issues

One of the advantages of using a high-level language is the pres­
ence of a library of support routines. The follOWing paragraphs
discuss requirements and deSirable f~atures for a library used
for systems programming applications and the problems involved
with using a standard C library for these applications,

Library Requirements

A library used for systems applications must be fast, compact,
and nonlhtrusive. The functions provided should include support
for ba~c programming functions, such as ttO. string-handling,
and memory management. Support for specialized systems
applications and requirements, such as interrupt handling, is a
desirable feature. Ubrary front ends should be available to make
it easy to issue common SVCs and system calls.

Source code should be provlded for those routines that interact
directly with the operating system to allow tailoring to meet spe~
cial requirements. The ability to use services other than the stan­
dard ones provided by the operating system, such as a CICS
GETMAIN ral11er l11an an MVS GETMAIN, shOUld be provided.
Library functions should not require dynamic loading, as this
function may oot be available in all environments. Additionally,
library functions not called should not be included in the load
module in order to minimize load module size. It is important to
be able to execute,C code with minimal library support for appli­
cations where C can be used as a high-level code generator.

The environment required by the library must be small, flexible,
and modifiable, and so source code should be available for the
environment support routines. For example, C supports auto­
mane 'variables and recursive function calls and therefore
requires a program stack of some sort. But no single method of
stack allocation and management meets the requirements of aU
systems applications on an architecture with no hardware staCk,
such as the 370. Therefore, it is important that the source far pro­
logue and epque routines, which manage the stack. be avail­
able and that the support provided by the compiler vendor be
flexible enough to accommodate different implementations.

The library should not impose arbitrary restrictions upon the pro­
grammer. as systems applications can require operations whose
meaning or utility are questionable in a traditional application.
such as treating the code of a subroutine as data. Not all error­
checking is inappropriate. but the library should avoid rejection
of any construct that might be (or become) meaningful. For
instance, it is reasonable to require that a GETMAIN macro spec­
ify a non-negative amount of storage. But it is not reasonable to
restrict the subpool number to a fixed set, particular1y since new
operating system releases could introduce new valid subpools.

Library Problems

The use of a standard high-level tanguage library can cause prob­
lems for systems applications. for example, consider an applica­
tion that requires repeated allocations of memory. It is certainly
preferable to call a library routine that already impfements a stor­
age management algorithm rather than to issue xepeated calls
to DMSFREE or GETMAIN, which can fragment aVailable storage
and cost significant overhead. While ealttng a library routine is
desirable, a degree of contrOl is required over the library for sys­
tems applications. For exa~ple. while the above application may
require that storage be allocated from a particular subpool, most
standard library storage functions do not provide 5Ubpool se!ec~
tion as an option. Or pElrhaps the stora.ge management algorithm
used by the IIDrary does not suit the needs of the application. A
normal high-level language library 1s often too inflexible for use
in systems programming applications.

For C, the library problem is compounded by the close coupling
of the ANSI definition of the library to the UNIX operating system.
Many concepts from UNIX have no efficient counterpart, or, even
meaning, under the standard 370 operating systems. For exam­
ple, ClIO functions assume that files are divided into records by
newline characters encoded In the file. This assumption is techni­
cally incorrect for 370 file formats. A single record of a 370 object
deck may contain any number of newline characters as data. It
is not possible to create an efficient library implementation, such
as is required for systems applications, that conforms to bOth
a«:hitectures,

Furthermore, the ANSI library defInition was created for general
applications programming and includes requirements that add
undesirabie overhead for systems applications. For instance.
ANSI requires that three standard files (stdin, stdout, and
st.derr) be opened by the library rather than by the application.
For a systems application, this adds expensive and frequently
needless overhead.

SAS/C Compiler Systems Programming Environment

The SAS/C compiler's Systems Programming Environment (SPE}
is an implementation of the C library and execution framework
that is designed for writing 370 systems applications. The follow­
ing: paragraphs provide an overview of this library and the envi­
ronment it provides.

The SPE library providas support for normal programming func­
tions. such as string-handling and 1/0, and for specialized sys~
terns programming functions, such as interrupt handling and
dynamiC loading. The functions lnduded in the library can be cat­
egorized into th(ee classes. In the first class are those functions
that are present in the full ANSI C library definition and that do
not interact with the operating system in any way. These include
the string-handling and mathematical functions. In the second
class are those functions that are present in the full ANSI C library
and do have operating system dependencies, such as ma 11 oc
or ex it. SPE versIons of these functions are provided.
In the third class are functions or macros that prOvide support
for specialized systems programming functions. such as inter-

655

rupt handling, or that invoke commonly used SVCs or operating
system services, such as GETMAIN.

The following functions are avai1able- in the SPE library:

1. memory management, including malloC'~ free, and
support for OM$FREE and GETMAIN

2. terminal 110, including OS TPUT{fGET and eMS
ROTERM/WRTERM

3. eMS File System and OS BSAM 1/0

4. dynamic loading

5. program control

6. interrupt handling

7. diagnostic control.

Source code is provided for the functions that interface with the
operating system to allow modification for spedallzed needs.
Only functions that are required are linked into the'load module
to ensure minimal load module size.

The SPE version of the C environment (called an execution
framework in SPE) is compact and flexible. The execution frame­
work is created during program start~up or on entry to the first
C routine. The start-up routirle acquires storage for program vari­
ables, manages the stack, allows for optional error-handling, and
provides for destruction of the framework and ,release of its
resources on termination of the application. Source is provided
for the start-up, exit and stack management routines. The execu­
tion framework can be managed by two basic methods.

1. The C framework can be created on $ntry to the main C
routine and destroyed on exit. This method is heavily
oriented towards traditional assembler programming
concepts and best used for a main C routine with a
number of subroutines.

2. Alternatively, using the INDependent compl1er option, the
C framewor'k can be created on entry to the first C
routine, preserved across function calls. and destroyed
when no longer required. This methOd is best suited for
a package of C service routines where no main routine
wi[J be executed.

Standard start-up routines are provided for generic cases. Since
the source cOde is provided, the start-up and exit routines can
be modified and combined with one of the two methods to con­
form to special environments and linkage conventions. For exam­
ple, consider the following constraints that may exist for a
program that runs as a eMS nucleus extension:

.. The values in RO. R1, and R2 on entry to the nucleus
extension must be passed to the C entry pOint.

4' The nucleus extenslon may have speCial attributes, such
as ENDCMO, which indicates the nucleus extensiOn
receives control at end-of-command processing.

.. The C framework: should only be created the first time the
nucleus extension is created and destroyed only when the
nucleus extension is dropped.

Through a combinatlon of the INDependent compiler option and
the provision for a user-written start-up routine, SPE enables C
programs to run as efficient nucfeus extensions. An example of

this use and one of an MVS SVC start-up routine are provided
in the SPE documentation.

SPE provides source for the prologue and epilogue routines. This
allows flexibility jn stack management and permits the trade-off
between support for debugging and gOOd performance to be
managed on an appl!cation~specific basis. For instance, an appli~
cation may require that aU registers be saved on function entry
to facilitate dump reading or that only a rnklimum number be
saved to improve performance. Additionally, SPE includes source
for the math error-handling and for the library warning routines,
providing a degree of control over the error-handling desired for
a specific application.

Support

There are several additional pieces of support that can aid in
using C fOr systems app1ications. One of the most importanttoo!s
provided by the SNi3/C compiler is the DSECT2C utility that con­
verts assembler DSECTs to accurate, usable C structure map­
pings. The SASle compiler accepts the nonstandard extensions'
to C that are required by these C structure mappings. These
include anonymous unions, such as those generated by overlap­
plng fields, and noninteger bitfields.

Good documentation containing useful. real-world examples is
very important and is a standard for all SASIC features, including
SPE. The SAS/C Usage Notes tape, available to any user of the
SASle compiler I will include an example library of actual systems
applications contributed by users. Vendor-provided support and
maintenance are important, as the reliability of systems applica­
tions is often Cfltical. The SAS/C compiler is known for its fre­
quency of releases. its availability of fixes for all known bugs, and
its knowledgeable, timely, and free technical support.

A source~level debugger can be a valuable tool for initial dabug~
glng of soma applications and greatly enhances programmer pro­
ductivity over a machine-level debugger. The SAS/C compiler
includes a source..!evel debugger that, while it does not execute
With the SPE library. can be used with the regUlar library during
initial debugging. For instance. the debugger includes the
MONITOR command to allow data objects and storage to be
monItored tor arbitrary changes in value. Additionally, the $PE
tibrary provides an optional post-mortem traceback facility via the
btrace function.

BENEFITS OF USING C FOR SYSTEMS
APPLICATIONS

It is clear that C is well-suited to many systems applications.
While the ANS1-defined C library is not well-suited for these appti­
cations. it is certainly possible to create a C library that does sup­
port systems programming applications well. The SAS/C
compiler meets this requirement with its SPE library.

In addition to the suitability of C for systems applications, there
are several other good reasons tor Choosing C. Programmer pro­
ductivity studies have shown that high-tevel languages require
less lines of code and less coding time than assembler, while the
ratio of bugs to !lnes of code remains approximately the same.
Thus., in the hands of an experienced software engineer, it is clear
that coding in C when possible is more productive, C is generally
ea.sierto maintain than assembler code. Experienced C program­
mers are plentiful compared to skilled assembler programmers,
and C programming skills are considerably more portable across
projects and hardware than assembler skills. In general, assem­
bler programmers learn C easily. And finally, there are some sys­
tems applications for which C is clearly superior to assembler.

656

DECIDING WHEN TO USE C FOR SYSTEMS
APPLICATIONS

The following points should be considered in any decision to use
C or assembler for systems applications. C is welt-suited for
applications that involve parameter parsing, table searches,
linked list processing, message text handling. and structured or
complex decision-making. Routines of this sort written in Care
also easier to debug and maintain.

Additionally. C should be considered for applications where the
overhead of the C environment is not significant compared to the
overan path rength of the code. Code size is a lesser consider­
ation, because in many cases C Code, especially if it has been
optimized, compares favorably with assembler in size and speed,

Applications that involve a very short instruction sequence or that
are in extremely high~volume. critical paths are probably best
written in tightly hand--optimized assembler. AdditionaJly, exits
that must run in a particular environment, such as-JES2 or GIGS.
while possibte' to write in C, require a fairly sizable initial program­
ming investment to craate. support, and adhere to the environ­
ment from C.

EXAMPLES

In the paragraphs below. the broad range of systems software
that has been written in C for the 370 is presented. Example applt-.
cations are then discussed.

As previously mentioned, there is an increasingly large body of
370 systems software written in C. Some examples that are writ­
ten using the SAS/C commler include

• information retrieval systems

• database management systems

• performance monitors

• natural language translators

• engineering applications design tools

• source code librarians and program construction utilities.

A good example of the versatility of C is in the development of
Version 6 of the SAS® System. C is used in the SAS System to
perform the following functions:

• user interface and applications

• full-screen user ·interface

• interprocess commun1cation

• task management

• memory management

• load module management

·1/0

• code generation,

Systems applications that are being planned at SAS Institute
using the SPE library jnclude

• a utility to install lOad modules Into discontiguous shared
segments under VM/XA ""

• a replacement for an assembler TSO TRANSMIT exit that
notifies users on different NJE nodes that they have mail

• an SVC 99 exit that validates the blocking factor for new
data sets

• a TSO/E EXEC exit that changes the system search order
for TSO commands.

CONCLUSIONS

The availability of C programmers and the support provided by
the SASle compiler's SPE make it feasible and desirable to use
C for 370 systems programming applications. Along with the pro~
ductMty and maintenance benefits inherent in a high-leve! lan­
guage, C is well-suited to many types of systems applications.
Data and function pointers provide access to system data and
routines. Generated code is small and faet. Structures can easily
be used to describe system control blocks. Bit and pointer opera~
tors are provided.

At mlnimum. the ability to (;lode machine instructions inline is
needed for issuing SVCs and unusual assembler instruction
sequences. IdeaUy, a C compiler should provide an option to gen­
erate assembler code in order to control register allocation and
call existing assembler macros.

A C library for systems programming needs to be small, nonintru­
slve, and well--inregrated with the operating system. Source code
should be provided for routines that interface with the operating
system or the C environment.

The installation using C for systems applications should evaluate
each application in terms of suitability to C. The decision should
consider such factors as:

• effect of library overhead on overall code size and speed

657

• nature of the programming tasks to be accomplished

• special environmental constraints

• critical nature of the application

• available programmer resources

• long-term maintenance considerations,

With wise application evaluation, C can provide considerable pro­
gramming resource savings white costing little or nothing in soft~
ware performance for many 370 systems programming
applications. The SAS/C compiler's SPE provides a library, and
C environment that facilitate the development of such applica­
tions.

SAS and SASjC are registered trademarks of SAS Institute Inc.,
Cary, NC, USA,

laM is a registered trademark and VMfXA is a trademark of Inter~
national Business Machines Corpora.tion.

UNtx is a registered trademark of AT&T.

