A BIRDSEYE VIEW OF THE MARKET: A METHOD OF ORGANIZING, COMBINING AND DISSECTING YOUR DATA FOR MARKET ANALYSIS

C. Olivia Rud
Providian Direct Insurance

ABSTRACT

Direct marketing has moved from a product driven, mass market approach to a market driven, custom product approach. Market segmentation commonly is used to identify subgroups which have similar geographic, demographic or lifestyle characteristics which correlate with certain performance measures such as response, risk, or profitability.

This paper presents a method of combining several data sets with similar descriptive variables but different performance measures with the goal of developing a comprehensive market overview. In this example, an internal database which houses all historical records provides accurate risk statistics. A test database on a current product configuration provides reliable response and/or paid sales rates. A census based data set provides market volumes such as number of individuals or households. Simple steps using PROC MEANS, PROC SORT, data merges and PROC PRINT generate an output from which a matrix can be developed. The matrix serves as a simple but powerful visual tool for marketers to use when developing marketing strategies.

INTRODUCTION

Business analysts are searching continually for effective ways to present findings and make recommendations to senior management. A visual presentation offers one of the best methods for conveying a set of statistical conclusions. This paper offers a step by step approach to building a market overview for supplemental health insurance. With slight modification, this technique can be applied to any market.

The choices for descriptive variables are population density, gender, income and age. The performance measurements are response rate and loss ratio (a risk measurement based on claim vs premium). Through comparisons of different levels of response and risk combinations, profitable market sectors are identified. From these sectors a matrix is created from which managers can select specific demographic groups for product testing and solicitation.

PROCEDURE

STEP 1: Preplanning

Initial selection of the demographic variables depends on two criteria: 1) availability from all data sources and 2) predictability of your market performance. Geographic variables such as SCF (Postal Sectional Center Facility: a grouping of zipcodes) and state also can be powerfully displayed using this technique.

Performance variables can be selected from several different databases as long as the descriptive variables are available and identically scaled on each database. This example first accesses a historical database to select total premiums (totprem) and total claims (totclaim). Together, these will be used to compute a loss ratio. Next, response rates are calculated from a recent market test. Finally, population projections are estimated using a weighted sample of census data.

STEP 2: Preparation of Descriptive Variables

To control the number of distinct sets of descriptive variable combinations, consider segmenting or grouping variables into a manageable number of levels. These levels may be tailored to meet certain marketing needs or split evenly for ease of interpretation. In this example, gender (Male, Female) and population density (City, Suburban, Rural) already are coded. The remaining continuous variables are segmented through the following code:
STEP 3: Computing Group Performance Measure Means

Access to a historical database for supplemental health insurance provides average dollar amounts of claims and premiums paid for several hundred thousand customers. This database also provides demographic information for each customer. A MEANS procedure using the following code creates an output data set which contains the means of claims and premiums for each combination of population density, gender, income and age:

```sas
proc means data=lib.history;
class popdens gender triincom triage;
var totprem totclaim;
output out=lib.histmean mean=;
title 'Historical Data';
```

Testing on new product configurations for supplemental health insurance resulted in response rates for various demographic groups (response = 0.1). The following MEANS procedure computes the average response rate for each combination of population density, gender, income and age:

```sas
proc means data=lib.respond;
class popdens gender triincom triage;
var respond;
output out=lib.respmean mean=;
title 'Response Data';
```

To determine market size, a MEANS procedure is performed on a weighted sample of census type data. The purpose is to generate SUM values of total records for each combination of population density, gender, income and age (totrec = 1 for each record):

```sas
proc means data=lib.census;
class popdens gender triincom triage;
var totrec;
weight weight;
output out=lib.censmean sum=surnrec;
title 'Census Data';
```

NOTE: Weights are necessary for census type data to represent the entire U.S. population.

The output from the means procedure shows the number of observations in each demographic combination. If sample sizes are too small to be considered statistically significant (< 30 is a good rule of thumb) then groups can be combined or omitted.

STEP 4: Selecting the Appropriate Mean Values

The output data sets produced in the MEANS procedure will deliver all combinations of class variables. To specify only the groups defined by the 4-way combination, the following procedure uses the _TYPE_ indicator (see SAS® Procedures Guide, Version 6, Third Edition, Pg. 377 for further detail):
data lib.histmean;
set lib.histmean;
where _type_ = 15;
data lib.respmean;
set lib.respmean;
where _type_ = 15;
data lib.censmean;
set lib.censmean;
where _type_ = 15;

STEP 5: Sort and Merge

By merging on the specific groupings of descriptive variables, we can create a data set which contains all performance measures on each combination of population density, gender, income and age:

proc sort data=lib.histmean;
by popdens gender triincom triage;
proc sort data=lib.respmean;
by popdens gender triincom triage;
proc sort data=lib.censmean;
by popdens gender triincom triage;
data lib.allmean;
merge lib.histmean lib.respmean lib.censmean;
by popdens gender triincom triage;
if totclaim = 0 then losratio = 0; else losratio = totclaim/totprem;

STEP 6: Determine Market Dynamics

Market managers generally have guidelines which are designed to determine acceptable ranges for performance variables. In this example, our 'break-even' response rate is 0.0225 and our loss ratio tolerance is 0.30. Our profitability model allows for an increase in loss ratio of 0.10 for every 0.005 increase in response rate. (The significance of this relationship will become more clear in the final analysis.) Through the following algorithm, we will establish the market segments which create our market matrix:

NOTE: The ranges for the 'M's center on the 'break-even' values with the widths designed to reflect the profitability sensitivity mentioned above.

STEP 7: Sort and Print Groupings for Matrix

A quick PROC SORT sets up the data set for printing in the defined groups. PROC PRINT using BY variables displays the demographic makeup of each of our market segments:

proc sort data=lib.allmean;
by lossgrp respgrp;
proc print label uniform data=lib.allmean;
var popdens gender triincom triage sumrec;
by lossgrp respgrp;
title 'Loss Ratio vs Response Rate';

A section of the output shows the groups and their demographic members:
STEP 8: Create Matrix in Spreadsheet Software

The following page shows the final matrix which was created in Microsoft Excel®. Fine tuning in the spreadsheet software allows you to create a customized matrix which can display any number of demographic and performance variables. Shading enhances the degrees of change.

CONCLUSION

As you can see, the final matrix provides a considerable amount of information. The shading from 'good' to 'bad' defines the market while the double line, zig-zagging through the center, divides the profitable segments from the unprofitable segments. This takes advantage of the segment breaks. For each 0.005 increase in response rate we can tolerate a 0.10 increase in loss ratio and maintain the same profit margin. The segments that follow the diagonal from upper left to lower right have similar profitability.

Further scrutiny provides even more information. 'High Risk' segments with 'Medium' to 'Med/High' response rates represent a large number of households. To take advantage of this riskier market which is eager to do business with us, we can consider developing products with slightly higher prices or cut our costs by mailing less expensive packages.

Conversely, since 'Low Risk' groups reap higher profits by reducing claims, segments with very low risk may be persuaded to respond with a lower priced product offering or a more expensive package.

By examining clusters of certain age groups, products can be designed to target the needs of distinct markets characterized by life stage segments such as family growth or retirement years.

Any combination of demographic, geographic, and/or transaction data can be tailored to create a market matrix. An additional sample, created using SCFs (defined by the first three digits of the zipcode) shows a more geographic application of this method.

NOTE: For more efficient programming, a program using macro processing is also included.

SAS is a registered trademark of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Author may be contacted at Providian Direct Insurance, Phase I 3th Fl., 20 Moores Road, Frazer, PA 19380.
This table is designed to compare markets of similar profitability. Area above double line represents markets with acceptable profitability.

Profitability remains equal if a change in response of .005 is offset by a change in loss ratio of approximately .10 (all other factors are held constant).

Market size in upper right corner of each segment is number of households estimated from 2% sample of census data.

States include AL, CO, DC, KY, MT, NE, NJ, OK, RI, TN, VA.

High risk segments with medium to med/high response rates represent >3.5MM households where opportunities exist for pricing/product variations.
Insurance Market by Population Density, Gender, Wealth and Age

<table>
<thead>
<tr>
<th>Risk</th>
<th>Low-Med</th>
<th>Med-High</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00 - .15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.15 - .25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.25 - .35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.35 - .45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.45 +</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table Notes:
- This table is designed to compare markets of similar profitability. A area above double line represents markets with acceptable profitability.
- Profitability remains equal if a change in response of .005 is offset by a change in loss ratio of approximately .10 (all other factors are held constant).
- Market size in upper right corner of each segment is number of households estimated from 2% sample of census data.
- High risk segments with medium to med/high response rates represent >3.5MM households where opportunities exist for pricing/product variations.
- S = Suburban Area R = Rural Area $H = Income >= $45K $M = Income < $45K and >= $30K $L = Income < $30K
COMPLETE PROGRAM USING MACRO FACILITY

%macro segment;
 if age <= 35 then triage = '< 35 '; else
 if age <= 55 then triage = '35-55'; else
 triage = ' > 55 ';
 if income < 30000 then triincom = 'L' else
 if income < 45000 then triincom = 'M'; else
 triincom = 'H';
mend;

data lib.history;
 set lib.history;
 %segment;

data lib.respond;
 set lib.respond;
 %segment;

data lib.census;
 set lib.census;
 %segment;

%macro seg_vars;
 popdens gender triincom triage;
%mend;

proc means data=lib.history;
 class %seg_vars;
 var totprem totclaim;
 output out=lib.histmean mean=;
 title 'Historical Data';

proc means data=lib.response;
 class %seg_vars;
 var respond;
 output out=lib.respmean mean=;
 title 'Response Data';

proc means data=lib.census;
 class %seg_vars;
 var totrecc;
 weight weight;
 output out=lib.censmean sum=sumrec;
 title 'Census Data';

data lib.histmean;
 set lib.histmean;
 where _type_ = 15;
data lib.respmean;
 set lib.respmean;
 where _type_ = 15;

data lib.censmean;
 set lib.censmean;
 where _type_ = 15;

proc sort data=lib.histmean;
 by %seg_vars;
proc sort data=lib.respmean;
 by %seg_vars;
proc sort data=lib.censmean;
 by %seg_vars;

data lib.allmean;
 merge lib.histmean lib.respmean lib.censmean;
 by %seg_vars;
 if totclaim = 0 then losratio = 0; else
 losratio = totclaim/totprem;

data lib.allmean;
 set lib.allmean;
 if 0 <= losratio < .15 then lossgrp = 'L'; else
 if .15 <= losratio < .25 then lossgrp = 'L/M'; else
 if .25 <= losratio < .35 then lossgrp = 'M'; else
 if .35 <= losratio < .45 then lossgrp = 'M/H'; else
 if .45 <= losratio then lossgrp = 'H';
 if 0 <= respond < .015 then respgrp = 'L'; else
 if .015 <= respond < .020 then respgrp = 'L/M'; else
 if .020 <= respond < .025 then respgrp = 'M'; else
 if .025 <= respond < .030 then respgrp = 'M/H'; else
 if .030 <= respond then respgrp = 'H';

proc sort data=lib.allmean;
 by lossgrp respgrp;

proc print label uniform data=lib.allmean;
 var popdens gender triincom triage sumrec;
 by lossgrp respgrp;
 title 'Loss Ratio vs Response Rate';