Effective Data Encryption Algorithms using the SAS® System
Annette I. Ladan, Centers for Disease Control and Prevention

ABSTRACT

It is desirable to disguise sensitive data, such as name and social security number from scrutiny or unauthorized access when using a shared SAS data set. A simple encryption/decryption algorithm to scramble key data solves this data security issue. Many SAS System character functions are available to support unique, simple, and keyless data encryption algorithms.

The cryptographic ciphers (substitution/translation schemes) presented for SAS character data are based on the monoalphabetic, polyalphabetic, and transposition approach. SAS-based encryption algorithms using each of these approaches and the precautions for devising such schemes will be described.

INTRODUCTION

A knowledgeable user can generate a proc contents and have access to variable descriptions on any unprotected SAS data set. Once the file is accessed, a user can expose, distribute, and/or manipulate sensitive data. Passwords, DOS commands, and various SAS System options and procedures can limit unauthorized access to a SAS data set. The use of encryption algorithms for sensitive data variables within the SAS data set provides additional assurance against unauthorized tampering especially when the data set is shared.

The many SAS System functions inherent in Base SAS software make it possible to develop such algorithms. Using these functions sensitive data are scrambled which makes the data set more secure.

SAS SYSTEM FUNCTIONS

The data encryption algorithms presented use many Base SAS System character functions. A brief overview of each function is listed.

COLLATE generates a collating sequence string

LEFT removes leading spaces and shifts text to the left margin

LENGTH returns a numeric value of a text string

REVERSE swaps the order of a character expression

SCAN searches for words and gives the result specified in the input argument

SUBSTR extracts a segment from a text string

TRANSLATE substitutes characters with other characters

TRIM removes trailing spaces

DATA ENCRYPTION ALGORITHMS

Encryption/decryption processes are either key (public and/or private key assignments) or keyless (secretly protected algorithms). The United States government’s Data Encryption Standard (DES) is a key-based system. Cryptographic ciphers are non-keyed systems. The monoalphabetic, polyalphabetic, and transposition ciphers are the most basic non-keyed cryptographic systems. "The monoalphabetic cipher substitutes every letter in the data with a letter that is three (sic) times higher. The polyalphabetic cipher divides data into groups of letters and then shifts the letters of each group. The transposition cipher changes the order in which letters appear but not the letters themselves." Data encryption algorithms using the monoalphabetic, polyalphabetic, and transposition ciphers are illustrated below.

*Sample PC SAS program. Outputs follow each data step. ;
DATA NAME;
 INPUT NAME $ 1-25;
 STRING = COLLATE(65,90); *Uppercase letters, A-Z;
 HIGH2 = SUBSTR(STRING,2); *Letters B-Z;
 HIGH3 = SUBSTR(STRING,3); *Letters C-Z;
 HIGH4 = SUBSTR(STRING,4); *Letters D-Z;
CARDS;
 JOHNDoe
; RUN;
Example 1. Use the monoalphabetic substitution cipher to substitute every letter in the name with a letter that is three times higher.

Functions CALLRITE, SUBSTR, TRANSLATE

DATA MONO;
 SET NAME;
 ENCRYPT = TRANSLATE(NAME,HIGH4,STRING);
 DECRYPT = TRANSLATE(ENCRYPT,STRING,HIGH4);
 PROC PRINT DATA=MONO;
 VAR NAME ENCRYPT DECRYPT;
 TITLE 'Illustration of the Monoalphabetic Cipher';
 RUN;

Illustration of the Monoalphabetic Cipher

<table>
<thead>
<tr>
<th>NAME</th>
<th>ENCRYPT</th>
<th>DECRYPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOHN DOE</td>
<td>MRKQ GRH</td>
<td>JOHN DOE</td>
</tr>
</tbody>
</table>

Example 2. Use the polyalphabetic substitution cipher to divide the first and last name into groups of letters and then shift the letters of each group.

Functions SCAN, TRIM, LENGTH

DATA POLY;
 SET NAME;
 LENGTH ENCRYPT ENCRYPTF ENCRYPTL DECRYPT DECRYPTF DECRYPTL;
 FIRST LAST $ 10;
 ENCRYPT = TRIM(SCAN(NAME,1));
 LAST = TRIM(SCAN(NAME,2));
 DO I = 1 TO LENGTH(FIRST); *Encrypts/decrypts first name;
 SUBSTR(ENCRYPTF,I) =
 TRANSLATE(SUBSTR(FIRST,I),HIGH2,STRING);
 END;
 DO I = 1 TO LENGTH(LAST); *Encrypts/decrypts last name;
 SUBSTR(ENCRYPTL,I) =
 TRANSLATE(SUBSTR(LAST,I),HIGH3,STRING);
 END;
 DO I = 1 TO LENGTH(NAME); *Concatenates first/last name;
 SUBSTR(ENCRYPT,I) =
 (SUBSTR(ENCRYPTF,I)) || (SUBSTR(ENCRYPTL,I));
 END;
 PROC PRINT DATA=POLY;
 VAR NAME ENCRYPT;
 TITLE 'Illustration of the Polyalphabetic Cipher';
 RUN;

Illustration of the Polyalphabetic Cipher

<table>
<thead>
<tr>
<th>NAME</th>
<th>ENCRYPT</th>
<th>DECRYPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOHN DOE</td>
<td>KPIO FQG</td>
<td>JOHN DOE</td>
</tr>
</tbody>
</table>

Example 3. Use the transposition cipher to change the order in which letters appear but not the letters themselves.

Function REVERSE, LEFT

DATA TRANS;
 SET NAME;
 LENGTH ENCRYPT DECRYPT;
 ENCRYPT = LEFT(REVERSE(NAME));
 DECRYPT = LEFT(REVERSE(ENCRYPT));
 PROC PRINT DATA=TRANS;
 VAR NAME ENCRYPT DECRYPT;
 TITLE 'Illustration of the Transposition Cipher';
 RUN;

Illustration of the Transposition Cipher

<table>
<thead>
<tr>
<th>NAME</th>
<th>ENCRYPT</th>
<th>DECRYPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOHN DOE</td>
<td>EOD NHQJ</td>
<td>JOHN DOE</td>
</tr>
</tbody>
</table>

PRECAUTIONS

As with any new technique, it is important to test the encryption algorithm on a dummy SAS data set. Users should also take these precautions: (1) make sure data can be decrypted once encrypted; (2) do not create faulty or undecipherable encryption algorithms and keep the algorithm simple; (3) know the contents of the encrypted variable and keep record layouts handy; and (4) secure the SAS code as well as the encryption algorithm.

CONCLUSION

The monoalphabetic, polyalphabetic, and transposition ciphers are effective means for encrypting data only if the algorithm remains a secret. These data encryption algorithms will protect sensitive character data variables on a shared SAS data set.

REFERENCE

ACKNOWLEDGMENTS

Thanks to Van Munn for his technical review and to Sharon Dickerson, MPA for her editorial comments.

SAS is a trademark of SAS Institute Inc., Cary, NC., USA.